Le Viséen

LA ZONE DE RABAT-TIFLET

Les terrains viséens de ce secteur sont décrits par LECOINTRE (1926), LECOINTRE & DELEPINE (1933), COGNEY (1957), PIQUÉ (1979) et EL HASSANI (1990). Ce dernier auteur a établi la lithostratigraphie en distinguant plusieurs formations :

LA FORMATION DU JBEL BAKKACH

Elle affleure dans la région de Rabat, où elle est transgressive sur le socle calédonien. Elle est formée par des conglomerats désorganisés à galets (du mm à 50 cm de diamètre) subarrondis, constitués de grès, de quartzites, de roches volcaniques, de granites et de pélites compactées dans une matrice gréseuse. Pour IZART & VIESLET (1988), ce faciès correspond à des dépôts de cône fluviatil. Il a livré une flore à Sphenopteridium dissecum, Rhacopteris, Asteralamites scrobiculatus qui indique le Viséen inférieur (DANZÉ-CORSIN, 1960).

Cette formation se rencontre soit sous forme de blocs dans les contacts anormaux, soit en discordance angulaire sur les terrains métamorphiques de l'Ordovicien. De ce fait, on peut dire qu'elle n'a pas de relation avec la formation grése-pélitique du Korïla située au Sud. Il est possible qu'elle ait migré du Nord vers le Sud sur le "dos" du socle calédonien au moment du rapprochement des blocs de Rabat-Tiflet et de Sidi Bettache.

LA FORMATION DE KASSEM RAHAL

LA SERIE DE L'OUED SATOUR

A l'Ouest de la ville de Tiflet, les terrains viséens forment une bande E-W large de quelques kilomètres et allongée sur une vingtaine de kilomètres : c'est la série de l'Oued Satour. La coupe-type levée le long de l'Oued Tiflet (EL HASSANI, 1990) montre des terrains carbonatés (400 m) transgressifs sur les poudingues siliceux du Strunien, qui s'organisent du bas en haut de la façon suivante (fig. 1) :

1. une alternance de grès et de pélites, de 400 m d'épaisseur, en séquences métriques. Elles débutent par des grès en bancs décimétriques, grossiers à la base, à granoclassement positif, surmontés par des bancs gréseux à stratifications obliques à base ravinante. Vers le sommet apparaissent des niveaux carbonatés lumachelliques qui ont livré à IZART & VIESLET (1988) à l'Est de Tiflet (x=406 et y=362,6) une microfaune mixte de labase du Viséen moyen (V2a-V2b).

2. Après une zone invisible sur 300 m, la suite de la coupe correspond aux affleurements de la route de l'ancien Souk de Tiflet. Il s'agit de répétitions d'une séquence sédimentaire d'une dizaine de mètres d'épaisseur, constituée par des bancs gréseux grossiers stratocroscroisants et il a livré à l'Ouest (x = 411 et y = 364) où ils datent le Viséen moyen (LECOINTRE & DELEPINE, 1933) et à ceux de Chaabet El

Fig. 1.- Colonnes stratigraphiques des séries viséennes de l'Oued Satour (EL HASSANI, 1990)
Harcha. Ce niveau a livré à IZART & VIESLET (1988) une association de microfaune et microflore du V2b-V3a, à l'Est de Tiflet (x = 406,3 et y = 363,7) presque identique à celle de Rabat.

3. des calcaires oolithiques à poches conglomératiques et des calcaires gréseux chenalités du Viséen supérieur qui forment le flanc sud d'un synclinale. La coupe la plus complète du Viséen supérieur est celle du flanc nord et du cœur du même synclinale. Elle affleure au Nord du Souk, en rive gauche de l'Oued Tiflet et elle présente une alternance de séquences d'épaisseur variable, de conglomérats et de calcaires oolithiques. Les conglomérats ont une matrice gréseuse importante qui cimente des galets hétérométriques et polygéniques. Les calcaires oolithiques passent parfois latéralement aux conglomérats. Ils sont identiques à ceux de la formation de Kassem Rahal où ils sont datés du V3b-V3c.

LES ZONES DE SIDI BETTACHE ET DE BEN SLIMANE

LE SECTEUR OCCIDENTAL

Dans la zone de Ben Slimane et du Cherrat, les terrains viséens ont été étudiés par LECOINTRE (1926); KELLING & MULLIN (1975), CHALOUAN (1977); PIQUÉ (1979) et ZAHRAOUI (1991). Ce dernier auteur a développé l'étude sédimentologique de ces terrains en apportant des précisions micropaléontologiques et en distinguant plusieurs affleurements :

La formation de Mechraa Mraiat

Cette formation, affleurant depuis le pont suspendu du bas Oued Cherrat à l'Ouest jusqu'à Mechraa El Kraret à l'Est, est transgressive sur les quartzites du Sinuniens; elle montre de l'Ouest vers l'Est des grès et grès calcaireux, des schistes à nodules quartzitiques et des grès conglomératiques surmontés par une barre de quartzites à interlits de pélites, puis par des pélites à intercalations locales de dolomies. En allant vers Mechraa El Kraret, le reste de la série, partiellement masqué par les terrains quaternaires, est constitué de turbidites avec des figures de glissement synsédimentaire.

La formation de Mechraa El Kraret

Elle est située à l'Est de la formation précédente (fig. 2) et présente la succession de deux membres :

1. Le membre de base, d'une épaisseur moyenne de 100 m, est constitué de bas en haut par des calcaires noirs sableux en bancs décimétriques, des calcaires bioclastiques sableux à chert (25 m), des calcaires récifaux lenticulaires (5 à 10 m), des brèches récifales alternant avec des calcaires micritiques, des alternances de calcaires bioclastiques avec des brèches, et enfin une barre (20 m) constituée d'un calcaire bioclastique. Ce membre représente donc une mésoséquence régressive et il correspond à des dépôts de type plate-forme carbonatée agitée où s'installent des édifices récifaux locaux. Ces différents niveaux ont livré à ZAHRAOUI (1991) une microfaune du V3βa.

2. Le deuxième membre, d'une épaisseur moyenne de 280 m, repose sur le niveau précédent en discordance de ravinement. Il est constitué de brèches calcaires et d'une alternance de grése-pélites associées à des couplets de calcaires, de calcaires gréseux et grès quartz-argileux. Les brèches sont lenticulaires, avec une base ravinante et elles correspondent soit à des calcirudites à éléments calcaires grossiers soit à des calcarinées à granoclassation positif. Ce membre présente des séquences unitaires de type Bouma. Localement, on note des variations verticales de faciès en passant des carbonates à texture immature à des terrigènes. Ces dépôts, ainsi que leurs modifications, sont liés à l'action des vagues de tempêtes (KELLING & MULLIN, 1975). Il s'agit donc d'une mésoséquence transgressive. Ce membre a livré à ZAHRAOUI (1991) une microfaune du V3βy.

Les autres affleurements

Dans la région de Souk El Had, le long de la tranche qui mène à l'Oued Cherrat, la série viséenne correspond au deuxième membre de la formation de Mechraa Kraret et elle montre la succession de trois niveaux (ZAHRAOUI, 1991):

- la base est constituée d'une alternance de grès et de pélites avec des intercalations de calcaires. Elle s'organise en séquences de premier et deuxième ordre sur environ 50 m. Cet ensemble, daté du V3βa, est surmonté par une vingtaine de mètres de pélites à intercalations gréseuses.
- le deuxième niveau est constitué de bas en haut par une brèche lenticulaire épaisse de 5 à 10 m, à blocs calcaires cristallins décimétriques, une lentille de 4 m de brèche sédimentaire gréseux-calcaire, et une alternance grése-calcaire qui se termine par une barre de 10 m de grès calcaires roses à litage oblique.

- la coupe se termine par une alternance grése-pétillique de type turbidite avec des intercalations de brèches calcaires lenticulaires. La présence de ces dernières au sein de la série turbiditique est liée à des tempêtes (KELLING & MULLIN, 1975). Ces niveaux carbonatés ont livré une microfaune du V3bβ probable.

Dans la région de Skhirat, sous les sables dunaires de la plage de Skhirat, la série viscénne est constituée d’environ 150 m d’une alternance de conglomérats, de grès grossiers et de quartzites avec des intercalations lenticulaires de calcaires bioclastiques, de calcaires oolithiques et de calcaires gréseux à microfaune constituée de Coelospongia joneit qui indique le V3bα et β. Plus au Sud, les terrains viscénnes sont très disloqués et partiellement masqués par les épandages quaternaires.

Dans la région de Kef Nezha, sur les argilites du Dévonien moyen repose en discordance de ravinement une barre de 200 m d’épaisseur constituée de calcaire récifal. Celle-ci a livré à CHALOUAN (1977) des Foraminifères indiquant le V3c (dét. VERSET). Au Sud de ce secteur, dans la partie nord d’Al Koudia, les calcaires de Kef Nezha reposent sur les argiles du Dévonien inférieur par l’intermédiaire d’une surface à brèches intraformationnelles et à failles synsédimentaires (15 m) et enfin une centaine de mètres d’une alternance de calcaire sableux avec des pélites. Les carbonates sont datés du V3b et V3c.

Paléogéographie locale

Les séries viscéennes sont transgressives sur les terrains du Dévonien inférieur par l’intermédiaire des niveaux plus récents V3bβ-V3c à l’Oued Cherrat, et V3c à Al Koudia, sur les quartzites du Strunien par des terrains plus anciens (V3a à V3b); et sur les dépôts du Famennien-Tournaisien à Sidi Radi par le V3b et V3c. La transgression viscénne s’effectue donc sur un paléorelief morphologiquement contrasté qui la guide et joue un rôle déterminant sur la répartition des différents faciès. La ride du Cherrat, probablement en partie émergée, domine la plate-forme subsidente carbonatée de Ben Slimane (fig. 3), bordée à l’Ouest par la zone émergée du môle côtier représentée par les dépôts grossiers de la coupe de Skhirat. À l’Est de la ride du Cherrat la mer avance progressivement sur une plate-forme carbonatée étroite dominée par les dépôts de tempêtes au V3b-V3c (IZART, 1990).

LE SECTEUR ORIENTAL

La formation de l’Oued Mechraa : Cette formation, d’une puissance estimée à 2000 m, affleure au centre de la zone de Sidi Bettache; elle a été définie par PIQUÉ (1979) entre les vallées de l’Oued Mechraa et de l’Oued Korifla où elle se superpose à la formation de Korifla. Ses niveaux de base sont identifiés plus au Nord dans la région de Mechra Es-Sedra (LAKHLOUFI, 1988). Ils correspondent à une apparition brutale de terrains sableux à structures de glissements sédimentaires. Schématiquement, la colonne stratigraphique de la formation de l’Oued Mechraa comporte une importante série de grése-pélites turbiditiques. Les grès présentent à la base tous les intermédiaires entre quartzarénites et litharénites. Ils sont souvent carbonatés et/ou microbrèchiques avec des séquences de Bouma de type tbc, tce (faciès D). Vers le haut, la succession passe progressivement à une superposition de barres gréseuses et d’alternances de grès et de pélites. Les grès sont grossiers, de type quartzarénites ou litharénites homogènes à lames parallèles, convolutes, ball and pillow, galets mous, à base légèrement ravinante, et à stratifications grossières et obliques.

La formation de l’Oued Mechraa a livré à IZART & VIESLET (1988), à Souk Larbée des Shouil (x=381.8 et y=355.5) des Foraminifères et des Algues du V2b-V3a.

La série de Beni Abid : La formation de l’Oued Mechraa passe latéralement à l’Ouest à un faciès plus carbonaté, la "série des Beni Abid". Celle-ci débute par quelques centaines de mètres de faciès de plate-forme constitués de bas en haut par des grès carbonatés à litage oblique, des grès microconglomératiques en bancs massifs et des calcaires plus ou moins sableux. Ces derniers ont livré, dans la région de Sidi Kassem, une microfaune et microflore du V3a-V3b.

Les grése-pélites des Bou Rzim : Plus à l’Est de l’Oued Mechraa, entre les secteurs de Brachoua et de Sidi M’Barek, la formation de l’Oued Mechraa est surmontée par "les grése-pélites des Bou Rzim" (PIQUÉ, 1979). Il s’agit d’une série turbiditique, d’environ 1000 m de puissance, constituée de silts et de grès à intercalations de grès calcaires, de brèches et de barres gréseuses. Ces roches s’organisent en mésoséquences négatives et positives, constituées de turbidites proximales non chenalisiées et distales (IZART & VIESLET, 1988). Dans le secteur de Rommani, ces faciès ont fourni (x= 394,2 et y= 350,4) une microfaune du V3c.

Fig. 3. La transgression viscénne dans le secteur de Ben Slimane-Cherrat (ZAIIRAOU, 1991)
LES MASSIFS DES MDAKRA ET DU KHATOUAT

L'étude lithostratigraphique entreprise dans les massifs des Mdaakra et du Khatouat (FADLI, 1990) a permis de distinguer quatre ensembles sédimentaires :

LA FORMATION DE SIDI SEBAA

Dans la partie sud du massif des Mdaakra, à environ 4 km au Nord de Sidi Sebba, le long d'une coupe E-W la formation s'organise en quatre membres successifs (fig. 4):

1. Sur les grése-pélites du Famenno-Tournaisien repose une barre de quartzites (membre E1) d'une cinquantaine de mètres d'épaisseur, en bancs de 10 cm à 4 m d'épaisseur, de couleur rose ou gris clair, présentant des passages carbonatés et bioclastiques lenticulaires. Le litage est oblique, planaire et parallèle. Au Nord et NNW de la coupe-type, ce membre se réduit progressivement à 10 m et il se subdivise en une alternance de grès quartzieux et de schistes carbonatés. Au Sud et SW, dans les régions de M’Gaora-M’Garto-Kef Tallal, son épaisseur peut atteindre plus de 200 m. Il est absent à Beni Sekten. A l’Est, dans le massif du Khatouat, le membre E1 affleure au niveau des flancs du synclinal de Souk Lakhmis. Son épaisseur ne dépasse donc pas quelques mètres. Au Sud, les sondages effectués dans le plateau des phosphates montrent l'absence des quartzites et suggèrent que les niveaux viséens plus récents reposent sur les terrains ordoviiciens et siluriens. Autrement dit, l'époque viséenne débute, dans les Mdaakra, par la mise en place d'une plate-forme littorale très peu étendue.

Le membre E1 a fourni en plusieurs endroits des macrofossiles qui ont permis à TERMIER & TERMIER (1951) de dater dans son intégralité du Viséen inférieur. Or, les niveaux de base de ce membre ont fourni un assemblage de spores du Tournaisien supérieur dans la vallée de l'Oued Zemrine. Dès lors, une partie au moins des quartzites est tournaisienne et le "Viséen inférieur" se trouve réduit à quelques mètres au sommet, car il a été trouvé à l’extrême sommet du membre E1.

2. Le deuxième membre (E 2), d'une puissance moyenne de 600 m, est constitué d'une alternance de pélites noires ou vert olivé, avec des bancs (1 à 30 cm) de calcaires bioclastiques, sableux ou vaseux. Vers le sommet apparaissent des bancs décimétriques de calcaire oolithique à stratifications obliques. Dans le massif du Khatouat, ce membre occupe le cœur du synclinal de Souk Lakhmis et il affleure dans la zone orientale sous forme de lambeaux alignés dans la direction NE-SW, larges de 100 à 200 m, engagés avec les sédiments du Famenno-Tournaisien dans une tectonique d'écaillage. Dans les Mdaakra, le membre E 2 affleure au niveau des grandes dépressions; il a fourni à TERMIER & TERMIER (1951), en plusieurs endroits, des macrofossiles qui, selon ces auteurs, sont caractéristiques du Viséen inférieur. Or, juste au dessus du membre E1, les calcaires ont fourni la plus ancienne association de Foraminifères du Viséen du Maroc (FADLI, 1990) dont Uralodiscus roundus, Glomodiscus oblongus et Luteotubulus licis, qui indiquent le V2a. Vers le sommet du membre apparaissent progressivement les espèces de la biozone V2b dont Endothyransis compressa, Koninckopora tenuiramosa, Forschis sunangulata, Exzolarisella index, Omphaloides licis, Archaeiscus sp. au stade concavus et Palaeolitularia sp.

3. Sur le membre précédent repose une barre gréseuse de plus de 200 m d'épaisseur qui s'organise en bancs décimétriques à métriques, sans interlits schisteux, avec des grès calcareux moyens, gris clair, à litage oblique et à débris végétaux, et quelques galets de quartzites dispersés de différentes tailles (2 à 10 cm) et bien arrondis. Les variations latérales de faciès y sont nombreuses et à toutes échelles, avec passage brutal à des grès calcareux bioclastiques plus ou moins oolithiques ou à des grès quartzieux. Au niveau de la rive droite de l'Oued Atech, les grès passent verticalement à des quartzites roses. A partir de cet endroit, en allant vers l'Ouest et le Sud-Ouest, son épaisseur augmente pour atteindre plus de 400 m.

Ces grès ont livré en plusieurs endroits des macrofossiles presque identiques à ceux du membre E2, qui ont permis à LECOINTRE (1926), TERMIER (1936) et TERMIER & TERMIER (1951) de les dater du Viséen inférieur. Selon VACHARD (com. orale), ces macrofossiles indiquent le V2b.

4. Le dernier membre (membre E4) occupe toute la vallée de l'Oued Zemrine au cœur d'un grand synclinal failé ainsi que la région de Bir Guettara. C'est un ensemble de
pélites noires à intercalations centimétriques et décimétriques de bancs carbonatés bleu-gris ou noirs, à litage fruste ou oblique parmi lesquels on distingue des bancs de calcaire gréseux bioclastique, des calcaires vaseux en plaquettes et des calcaires oolithiques plus ou moins sableux. En somme, à l’affleurement, les membres E2 et E4 ont des faciès analogues, et TÉRMIER (1936) les a confondus. La seule différence réside dans le fait que le membre E4 est dominé par des faciès oolithiques. Ces derniers ont livré à FADLI (1990) une microfaune indiquant le Livien supérieur (V3a).

LA FORMATION DE MELLILA

Au NW du massif des Mdakra, dans la région de Mellila, affleure une puissante série de plus de 700 m d’épaisseur, la formation de Mellila, différente de la formation de Sidi Sebaa par sa lithologie et son contenu paléontologique. Le long d’une transversale NE-SW partant des Mnaâra jusqu’au croisement de l’Oued Zemrine avec la piste de Bir Guevara, on rencontre de façon discontinue les trois membres de la formation (fig. 4) qui correspondent à un ensemble récif-conglomérat-oolistolite (E5), à des argilo-pélites à intercalations de bancs carbonatés (E6), et à une masse argilo-pélitique (E7).

1. L’ensemble conglomérat-récif-oolistolites (E5) : les récifs ont une épaisseur variable, entre 40 m à Mnaâra et 100 m à Hajra El Beida et Sidi Kassem. Ils forment des bancs massifs bleu-gris et admettent quelques intercalations de calcaires bioclastiques. Les conglomérats forment des bancs de 5 à 30 cm d’épaisseur, souvent lenticulaires et interstratifiés dans les argilo-pélites. Ils sont constitués de galets homométriques (1 cm), de nature calcaire ou gréseuse, bien arrondis et jointifs. Avec ces conglomérats, on rencontre de façon sporadique des bancs de calcaires oolithiques de 5 à 20 cm d’épaisseur. Les oolistolites sont constitués de calcaire conjuit. Ils sont de taille variable, de 20 cm à 4 m de diamètre, généralement émoussés et embassés de façon anarchique dans les argilo-pélites. À côté de ces blocs, on rencontre des bancs lenticulaires de conglomérats à éléments gréseux et calcaires.

Toutes ces roches ont livré en plusieurs endroits des Foraminifères dont Howchinia bradyana qui indique le V3by. Cela implique qu’à cette époque, des mouvements épicoenéogeniques sont responsables de la mise en place, par exhaussement, d’une barrière récifale qui avait une longueur kilométrique NE-SW depuis les Mnaâra jusqu’à Sidi Kassem et qui était constamment rompue par ces mêmes mouvements et soumise à une érosion intense pour alimenter les zones proximales en galets et blocs calcaires.

2. Les argilo-pélites à bancs calcaires (E6) : ce membre a une épaisseur moyenne de 200 m ; il est constitué d’une alternance de bancs d’argilo-pélites et de calcaires. Ces derniers, de 5 à 30 cm d’épaisseur, sont des calcaires bleu gris plus ou moins oolithiques, sableux et/ou bioclastiques, à litage horizontal ou oblique souvent en mamelons, et les conglomérats sont de même nature que ceux du membre précédent. Les calcaires de ce membre ont fourni Howchinia bradyana du V3by. De ce fait, le membre E6 représente soit un passage latéral du membre E5, soit une superposition, mais toujours à l’intérieur du V3by très épais.

3. Les argilo-pélites (E7) : Ce membre est constitué de plus de 300 m de pélites argileuses vert olive, noires ou rouges lorsqu’elles sont oxydées avec quelques horizons météoriques grése-pélitiques et quartzitiques qui viennent en rompre la monotonie. Les intercalations de termes carbonatés sont très rares et apparaissent sous forme de bancs lenticulaires de calcaires vaseux, de bancs centimétriques de calcaires noduleux ou en plaquettes et de rares bancs microbrècheux chenalités. Ce membre occupe toute la partie nord de la vallée de l’Oued Zemrine où il se superpose aux calcaires et pélites de Sidi Kassem du V3by, avec une mince intercalation de roche volcanique et des lits de quartzites. Au SE de Sidi Mohamed Ben Abdellah, il a fourni à TÉRMIER (1936) une faune dont Posidonomya becheri qui indique le Viséen supérieur.

La formation de Mellila représente les dépôts d’une plate-forme carbonatée très peu profonde (récifs-calcaires oolithiques) qui était le siège d’une intense activité tectonosédimentaire (conglomérat-oolistolites). Elle est d’âge V3by et se superpose stratigraphiquement à la formation de Sidi Sebaa d’âge V2a/b. Les époques V3bβ et V3bβ ne semblent pas avoir enregistré de dépôt dans le massif des Mdakra. Cette absence peut être expliquée par une érosion très probable étant donné le caractère littoral des dépôts de la formation de Sidi Sebaa. Ajoutons qu’à l’époque V2a-V2b, la région de Mellila était émergée (FADLI, 1990).

LA SERIE VISEENNE DE BENI SEKTEN

Dans la plaine d’Al Gara, les terrains viséens affluent au cœur du synclinal de Dar Cheikh M’Faddel où il sont transgressifs sur les roches du Strunien, et à Sidi Bou Chta et dans les régions voisines où ils forment une bande NW-SE large de 1 km, en contact faillé avec les sérres du Dévonien. Sa colonne est divisée en trois niveaux successifs en partie masqués par les épandages quaternaires (fig. 5) :

1. le niveau de base affleure sous forme de tâches de longueur hектométrique. Au SSW de Sidi Bou Chta, il montre une alternance de pélites noires, en bancs de 1 à 10 cm et de grès fins à moyens gris ou bleu noir, plus ou moins carbonatés et bioclastiques, en bancs de 10 à 30 cm d’épaisseur, avec un litage horizontal ou oblique.

2. Le deuxième niveau est constitué de pélites vert sombre, à minces intercalations de calcaires vases avec une coulée volcanique identique à celle de la région de Mellila et une barre métrique de calcaire récifal.

3. Les affleurements du troisième niveau sont bien dégagés à Sidi Bou Chta et au synclinal de Dar Cheikh M’Faddel. Ils sont constitués de plus de 100 m de calcaire bleu gris, organisé en bancs de 30 à 40 cm d’épaisseur, sans interlits pélitiques. Chaque banc est constitué de calcaire bioclastique, plus ou moins sableux avec un litage
horizontal plan et/ou oblique, et il montre à son sommet des galets subarrondis hétérométriques (1 mm à 80 cm) de calcaires, de grès et de quartzites plus ou moins abondants, le plus souvent dispersés à l’intérieur d’une couche conglomératique. Ce niveau se termine par une cinquantaine de mètres de conglomérats au cœur du synclinal de Dar Cheikh M’Faddel, organisés en bancs surtout météris et constitués de galets hétérométriques (de 1 mm à 20 cm), arrondis et anguleux. Ils sont de nature calcaire, gréseuse et quartzitique, et plus ou moins flottants dans une matrice de grès calcaire.

Pour ROCH (1950) et TERMIER & TERMIER (1951), ces trois niveaux appartiennent au Viséen inférieur, mais les déterminations par microfaune et microflore montrent que le premier, à Exuvotarissa index; Epistacheoides nephriformis, Stacheoides papillata, Koninkkora inflata, Koninkkora sahariensis, Ilemithurammina sp., Globoendothyra ex. gr. globulus, Endothyra bowmani, est d’âge V2b-V3a; il est donc l’équivalent latéral des membres E3 et E4 de la formation de Sidi Sebaa. Les deux derniers niveaux sont d’âge V3b. Il s’agit donc de l’équivalent latéral de la formation de Mellila.

2. Un niveau d’une centaine de mètres est constitué de pélites vert olive à minces intercalations de calcaire bleu gris, bioclastiques de grès calcaire et de rares bancs de grès. Ce niveau se termine par une quinzaine de mètres de litharénites de même nature que celles du niveau précédent formant des lignes de crêtes dans le replat d’Al Qotaybat. Ce niveau est d’âge V3b.

3. Environ 400 m d’une alternance de pélites et de calcaire bleu gris ou jaunâtre lorsqu’il est dolomitique, de calcaire oolithique, et de rares bancs de calcaire vaseux et de microbrèches.

Fig. 6: Colonnes stratigraphiques des séries viséennes d’Al Qotaybat (FADLI, 1990)

À Sidi Daoui, les calcaires ont fourni à ROCH (in TERMIER, 1936) Posidonomya becheri du Viséen supérieur et des Foraminifères du V3b.

Au SW d’Al Qotaybat les terrains viséens montrent de nombreuses variations de faciès. Ainsi, de Sidi Daoui à Sgueima sur la formation de Bir En-Nasr, en continuité de sédimentation, reposent une centaine de mètres d’une série identique au niveau 1, elle-même surmontée par plus de 200 m d’une autre série constituée d’une alternance de pélites vert-olive et de calcaire oolithique plus ou moins bioclastique en bancs décimétriques, daté du V3b (FADLI, 1990). Ce niveau est surmonté par une centaine de mètres de calcaires périréfléchés en bancs décimétriques et métriques intercalés de calcaire bioclastique ou de pélites vert oliv. Au-dessus repose une alternance de pélites et de bancs de calcaires oolithiques, souvent microbrècheux, plus ou moins gréseux et bioclastiques qui ont fourni à ROCH (in TERMIER, 1936) Posidonomya becheri.

La répartition des séries des massifs des Mdaaka et du Khatouat indique la mise en place, au Viséen, de trois aires sédimentaires:
- une plate-forme carbonatée infralitorale du Livien qui s'étend dans le Sud des Mdakra et du Khatouat, limitée au Nord par le "haut-fond du Khatouat".
- une plate-forme récifale instable du Warnantien qui s'installe dans la partie nord du massif du Khatouat.
- une plate-forme carbonatée au Viséen supérieur (V3b-V3c) qui s'installe dans la région de Mellila et de Beni Sekten.

LA REGION D'OULMES

Les terrains viséens de ce secteur montrent une très grande diversité lithologique et une grande extension cartographique. Ils ont fait l'objet de nombreux travaux, résumés dans l'étude de TAHIRI (1991). Cet auteur distingue deux ensembles sédimentaires :

LA FORMATION DE TOUGOUROULMES

Cette formation, définie dans la gouttière N-S de Tougouroulmes, est ployée en un synforme plurikilométrique. Sa succession lithostratigraphique, établie à partir de plusieurs coupes distinctes, présente trois membres (fig. 7):

1. Le membre inférieur affleure à 1 km au NE d'Oulmès, au niveau de la colline de Tougouroulmes où il est daté du V2b-V3. Il présente de bas en haut :
 - des calcaires oolithiques sableux et conglomératiques (20 m), en bancs souvent lentilaires de 5 à 90 cm d'épaisseur
 - des quartzites à lentilles calcaires oolithiques (15 m) en bancs de 20 à 80 cm d'épaisseur, avec de nombreuses laminations obliques et une base ravinante
 - une vingtaine de mètres de calcaires gris bleu en bancs lentilaires de 5 à 25 cm d'épaisseur et à joints argileux. Vers leur sommet, ces calcaires admettent des intercalations décimétriques de grauwackes quartzitiques et lumachelliques
 - des grauwackes quartzitiques (10 m) à lentilles conglomératiques et des pélites.

2. Le membre médian affleure à 500 m à l'Ouest du croisement de la route d'Oulmès et de la piste de Tiliouine. Il comprend de bas en haut:
 - des pélites verdâtres et des calcaires noirs (15 m).
 - deux barres de quartzites épaisses respectivement de 1,5 m et 3,5 m qui encadrent quelques mètres d'une alternance de calcaires, de quartzites et de pélites.
 - des calcaires noirs, en bancs de 10 à 50 cm d'épaisseur avec des intercalations de lentilles quartzitiques souvent lumachelliques.
 - une vingtaine de mètres de pélites verdâtres à blocs décimétriques de calcaires. Ce niveau témoigne d'une dislocation momentanée de la plate-forme carbonatée.

3. Le membre supérieur, d'âge V3bβ ou V3by, est représenté dans les coupes levées à 15 km au N d'Oulmès. On distingue de bas en haut la succession synthétique suivante :
 - des turbidites formées par des alternances de niveaux grauwackeux et pélitiques qui s'organisent en séquences d'épaisseur métrique. L'épaisseur de ces terrains est de 500 à 800 m.
 - des alternances calcaires, grauwackes et/ou grauwackes quartzitiques et pélites. Les bancs de ces roches sont décimétriques à métriques, avec des convolutes et des laminations contournées, parallèles et obliques. L'épaisseur totale de ces terrains est de 250 à 300 m. Ce membre représente des dépôts du cône sous marin externe, partie proximale (COSTAGLIOLO & VACHARD, 1984). Leur matériel proviendrait de la destruction d'une plate-forme carbonatée.

Fig. 7: Colonne stratigraphique de la formation de Tougouroulmes (TAHIRI, 1991)

Dans la région d'Ouljet Soltane, la formation de Tougouroulmes est transgressive sur les terrains du Dévonien inférieur et moyen, du Famennien et du Strunien et elle est surmontée par les sérifs du Namurien. Schématiquement, elle est constituée de bas en haut et du SE vers le NE par des pélites-grauwackes-conglomérats (100 m), des calcaires lentilaires parfois récifaux, surmontés d'argilites à blocs et datés du Viséen moyen V2b-V3, V3a-V3bβ V3bβ (250 m) et enfin par 500 m de turbidites. La sédimentation est donc littorale au SE, puis elle témoigne d'une plateforme carbonatée peu profonde,
localement disloquée. Vers le NW, elle est représentée par des turbidites.

Au Nord de Tiliouine, le membre inférieur correspond à des turbidites du cône interne et moyen, alors que les dépôts du membre supérieur se situeraient dans le cône moyen ou dans la zone proximale du cône externe. Ainsi, on a dans ce secteur une continuité avec la sédimentation tournaissienne avec un approfondissement vers le NNE du bassin au Viseen moyen et supérieur.

Au NE de Tiliouine, la formation de Tougouroumlès repose sur les terrains tournaissiens et les quartzites strunien. Elle est représentée par le membre médian qui se termine, ici, par une barre de calcaires bioclastiques et sableux datée du V3bβ. Ces faciès sont surmontés par une partie du membre supérieur (100 m environ d'alternances de grauwackes et de pélites).

Ainsi, la sédimentation viséenne est représentée au SW de Tiliouine par des dépôts de plate-forme. Lateralités, vers le NE, la sédimentation devient progressivement turbiditique et elle suggère un bassin profond. Cette paléogéographie est contrôlée par une tectonique de failles similaire à celle qui régnait au Tournaissien, responsable de l'approfondissement progressif du bassin de Tiliouine vers le N et/ou le NE et de l'approfondissement progressif du SW au NE des fossés de Sidi Abbou à l'Ouest et de Tougouroumlès à l'Est.

Dans la région de Tiddas, le membre inférieur est présent seulement dans les confins de l'oued Beht. Il a une épaisseur de 100 m et il a livré une microfaune du V2b-V3. Le membre supérieur, plus épais (1000 m), est turbiditique, le membre médian carbonaté étant absent. Il y a donc approfondissement du milieu de dépôt dans ce secteur.

LA FORMATION DU FOURHAL

Elle occupe toute la partie est du secteur depuis la région de Bou Alazz-Ras Ktib au Nord, jusqu'aux Smaala. Les assises de la formation sont ployées en un syncénlinorium orienté NE-SW, dit "syncénlinorium du Fourhal" (TERMIER, 1936). C'est dans le flanc ouest ou NW de ce syncénlinorium que la formation a été définie par TAHIRI (1991). Elle repose sur les terrains de l'Ordovicien et du Dévonien supérieur et elle est recouverte par des dépôts du Namurien. Schématiquement, on peut distinguer quatre membres (fig. 8) :

1. le membre de base comprend des pelites à intercalations de bancs (5 cm à 1 m) de grauwackes lithiques à base ravinante parfois granoclassées, et de conglomérats lenticulaires décimétriques à métriques à galets bien roulés, à ciment grauwackeux et argileux. L'épaisseur du membre est de 100 m environ.
2. le membre inférieur, peu épais (50 m), est constitué de calcaires et de pelites. Les calcaires constituent parfois des barres de 10 à 50 m d'épaisseur. Ils sont oolithiques, bioclastiques et sableux, parfois récifaux et débuent par des calcaires conglomératiques à laminations obliques.
4. le membre supérieur est constitué d'alternances turbiditiques. Son épaisseur est de plus de 500 m.

Fig. 8: Colonnes stratigraphiques de la formation de Fourhal

La formation du Fourhal permet de mettre en évidence une aire sédimentaire profonde : le bassin du Fourhal. Celui-ci, allongé selon une direction NE-SW, est bordé à l'Ouest ou au NW par une zone de pente ou de talus à instabilité sédimentaire, puis une plate-forme peu profonde limitée à l'Ouest ou au NW par des zones émergées : la ride d'El Hammam.
Dans la région de Bou Alzaz le membre de base contient peu de produits conglohmétriques. Les carbonates du membre inférieur sont plus épais (100 m). Les indices d'instabilité du membre médian sont absents. Le membre supérieur est toujours turbiditique.

Au NW de Moulay El Hassan, les pélites du membre médian renferment plusieurs blocs de calcaires et de grauwackes, de taille centimétrique à plurimétrique, datés du V2b-V3 et V3bOβ, et des niveaux conglohmétriques lenticulaires. Il s'agit donc de produits du démantèlement de la plate-forme carbonatée qui s'accumulent au pied de falaises.

Dans le flanc SE du synclinorium du Fourhal, à 30 km à l'Est d'Oumlès, le membre de base est absent et les niveaux conglohmétriques du membre inférieur sont réduits, avec une épaisseur de 300 m. Les membres médian et supérieur représentent la base du Viséen supérieur (TERMIER, 1936). La paléogéographie est, ici, différente : De l'Est vers l'Ouest, on passe d'une plate-forme détritique à des dépôts deltaïques, à une zone de pente puis au bassin à turbidites.

LA ZONE D'AZROU-KHÉNIFRA

LES FORMATIONS D'AZROU

La formation de Mouchenour-Ain Ichou

Cette formation affleure sur la route d'Adarouch (BOUABDELLI, 1982 et 1989). Elle est représentée par environ 1500 m à 2000 m d'une série détritique écaillée montrant de bas en haut la succession suivante (fig. 9) :

- des schistes noirs à minces intercalations de grès à débris végétaux et granoclassés qui deviennent de plus en plus abondantes vers le haut (200 m)
- une alternance de schistes gréseux et de grès à caractère de turbidites à rides de courant et à litage oblique (500 m)
- des grès grossiers à nodules ferrugineux et à galets, des argiles à blocs métriques de calcaires et de grès, des brèches lenticulaires à éléments calcaires et gréseux hétérométriques, quelques bancs à caractères de turbidites gréseuses, et enfin un complexe olistolithique calcaire et des conglohmétrats d'une puissance de 20 m. Les blocs de calcaires bleu gris bioclastiques sont métriques à décemétriques. Les conglohmétrats sont en bancs métriques et leur matrice grése-calcaire enrobe des blocs anguleux ou subarrondis (10 à 50 cm) de grès, de calcaires divers surtout oolithiques. Ce niveau se termine par une série fine à brèches lenticulaires.

- un flysch à blocs ou wildflysch, d'épaisseur moyenne de 300 m. Les olistolites sont de toutes tailles, isolés ou en cortège continu.

- un flysch à slumps, constitué d'une alternance de grès et de schistes gréseux (100 m); puis un flysch schisteux à olistolites sur environ 200 m.

![Figure 9: Colonnes lithostratigraphiques de la formation de Mouchenour-Ain Ichou (BOUABDELLI, 1989)](image-url)

Les formations carbonatées

Le secteur d’Azrou est également caractérisé par l’affleurement de séries viscéennes de plate-forme qui se présentent souvent sous forme d’olistostromes au sein de la formation de Mouchenkur-Ain Ichou, où certains termes sont décrits comme des pinacles récifaux (TERMIER & VACHARD, 1975). Parmi ces séries carbonatées BOUABDELLI (1989) a distingué plusieurs séquences :

Fig. 10 : Colonne stratigraphique des séries viscéennes du secteur du Goulib (VERSET, 1983)

La coupe d’Akechmir N’Bou Annou (12 km au N de Souk El Had) montre des termes de base de la formation d’Izdi Hayane (BOUABDELLI, 1982 : fig. 11) qui reposent en discordance angulaire sur les terrains sous-jacents et qui appartiennent au Viséen moyen (FAIK, 1988). Vers le SW, dans la région de Dchar Ait Abdellah, TERMIER & al. (1977) décrivent son équivalent latéral : la formation de Tizi Ben Zizouit

Fig. 11 : Colonnes stratigraphiques des séries carbonatées du Viséen supérieur dans le secteur d’Azrou (BOUABDELLI, 1989)

II - formation de BouBalghatene : 1. conglomérat et calcaires, 2. pelites calcaires et calcaires à Productus, 3. grès calcaires gréseux et conglomérats, 4. calcaires gris à Gigantoproducts, 5. calcaires gréseux et calcaires gras, 6. pelites marneuses à calcaires et conglomérats.

LES FORMATIONS DE MRIRT

Les formations de Mrirt ont une extension moins importante que celles de la région d’Azrou, mais les différenciations de faciès entre un ensemble turbiditique et des dépôts calcaires et grése-calcaires persistent. Ces formations ont été étudiées surtout par FAIK (1988) qui a distingué quatre formations (fig. 12) :

La formation de BouIqualouchen : Cette formation, située à 5 km à l’Ouest de Mrirt, comprend à la base des calcaires et des calcaires gréseux d’âge V2b-V3a, transgressifs sur les terrains dévonien. Ce niveau est surmonté par des pelites marneuses à intercalations de calcaires (180 m), d’âge V2b-V3a. Vers le sommet on passe à une série turbiditique (600 m), surmontée par quelques mètres de calcaires gréseux datés du V3bβ-V3bγ (fig.12)
Fig. 12.- Colonnes stratigraphiques des formations viséennes de Mrirt (FAK, 1988)
La formation de Tanwalt : La formation de Tanwalt, affleurant à 3 km au NE de Mrirt, est transgressive sur les terrains ordoviciens. Elle est constituée à la base par quelques dizaines de mètres de conglomérats polygéniques et de calcaires bioclastiques d’âge V3b. Vers le sommet, on passe à un faciès turbiditique plus épaissi (400 m).

La formation de Bou Tazart-Titar Omjer : Cette formation, situé à 4 km au Nord et NW de Mrirt, correspond aux faciès à olistolithes calcaires de la région d’Azrou. Elle est constituée par deux ensembles sédimentaires : des dépôts de plate-forme carbonatée à la base et des turbidites vers le sommet contenant des olistolithes d’âge V3b.

La formation de M’cawwar : Elle affleure à une dizaine de kilomètres au NW de Mrirt, et comporte des faciès de plate-forme carbonatée dont l’âge s’échelonne entre le V3a et le V3c-Namurien.

LES FORMATIONS DE KHÉNIFRA

La série allochtone : On sait que la région d’Azrou-Khénifra est affectée, au Viséen supérieur-terminal, par la mise en place de nappes synsédimentaires, probablement par un mécanisme gravitaire dont le détail est analysé plus bas par BOUABDELLI [ce volume]. Ces nappes sont constituées d’un matériel sédimentaire dans lequel se trouve une série visécène. Celle-ci débute par une brèche de 20 à 50 m d’épaisseur, à éléments quartzitiques et schisteux du Cambro-ordovicien, hétérostratigraphiques, argileux et reliés dans une matrice gréseuse (fig. 13A). Ces dépôts en "brèches de remplissage" sont surmontés par des conglomérats de base lenticulaires, de 10 à 20 m d’épaisseur, à galets plus arrondis de quartzites, de schistes et de calcaires. Le niveau passe latéralement à des dépôts carbonatés. Le troisième niveau est constitué de barres de calcaires gris-clair (20 à 150 m d’épaisseur), bioclastiques, à passées oolithiques, localement bréchiques. Il est interprété comme des pinacles récifaux. CHANTON-GUYENC & MORIN (1973) et VERSET (1983) ont pu reconstituer ces masses biothermales et y dater le V3b-V3c. Elles sont surmontées par des pélices et des calcaires oolithiques. Vers le sommet, on passe à des dépôts turbiditiques (800 m), puis à un flysch (300 m) à olistolithes de grès grossiers, de grès calcaires, de calcaires cryptes du V3b, de calcaires griottes du Dévonien, de quartzites et de schistes du Cambro-Ordovicien, et enfin un flysch gréseux (300 m) à intercalations lenticulaires de brèches et à olistolithes de l’étage précédent.

La série autochtone : Cette série repose sur les terrains cambro-ordoviciens de la nappe de Khénifra. Elle est parfois chevauchée par cette même nappe. Elle est par ailleurs resédimentée dans la série précédente. Schématiquement sa succession se présente de la façon suivante (fig.13):

- les termes de base sont soit des conglomérats quartzitiques, soit des grès grossiers ou des calcaires calcaireux.
- une alternance grése-pélitique à intercalations lenticulaires de brèches et de calcaires.
- des brèches conglomératiques, où les bancs grése-calcaires sont remaniés sur place dans une matrice péliite.
- des calcaires gréseux et des calcaires associés à des quartzites (couplets) attribués par KELLING & MULLIN (1975) à des dépôts de tempêtes.
- une alternance de grès calcaires et de pélices, à niveaux bréchiques.
- des pélices verdâtres à lits quartzitiques minces.

L’analyse d’une coupe E-W (fig. 14) allant de l’extrémité nord du Jbel Bamuissa montre l’imbrication des faciès dans cette zone frontale entre l’unité allochtonne et l’unité autochtone.

Fig. 13 : Colonnes stratigraphiques des formations visécennes de Khénifra (BOUABDELLI, 1989)

A - Formation autochtone : 1. brèches, 2. conglomérat de base, 3. calcaires bioclastiques et récifaux, 4. grès et conglomérats, 5. flysch d’Aït Mazel, 6. flysch, 7. flysch gréseux

Les variations de faciès : La distribution des faciès décrits précédemment montre de nombreuses variations latérales, selon une direction NE-SW. Elles ont été analysées par MULLIN (1977) qui a distingué cinq unités :
La formation de Jbel Takkat et Bou Ifoullousene (VI): Au Jbel Takkat, la série viscéenne reposant en discordance angulaire sur les terrains cambro-ordoviciens débute par un poudingue polygénique de 10 m d'épaisseur, à éléments quartzitiques et silexite surmontés par des brecches (5 m). Ces dépôts passent vers le haut à des grès et gruwackes puis à des calcaires bioclastiques (20 m) d'âge V2b-V3a. La série de Bou Ifoullousene passe latéralement à celle de Jbel Takkat puis la prolonge verticalement. Elle est constituée d'une alternance grése-pélitique avec d'importantes intercalations lenticulaires de grès. L'épaisseur de cet ensemble est d'environ 100 m. Ces deux séries se caractérisent par des variations latérales rapides de puissance et de faciès. Le plus souvent, elles manquent totalement ou partiellement soit qu'elles aient disparu par érosion immédiatement après leur dépôt, soit que ces dépôts aient été très localisés.

La formation de Bou Rifi: Elle se superpose à la formation précédente et débute par un conglomerat remaniant les éléments de son soubassement, suivi par des calcaires conglomeratiques (15 m), à intercalations de grès à laminations obliques. Cette formation se termine par une vingtaine de mètres de calcaires bioclastiques datés du V3b à V3c.

La formation de Sidi Lamine: Elle est constituée de schistes noirs, à interlits de grès fins, avec de fréquentes intercalations de grès carbonatisés et de calcaires. Elle est caractérisée à la base par un niveau repère typique, un banc de 30 à 50 cm d'épaisseur de calcaire lité. Vers le sommet dans les schistes apparaissent des bancs lenticulaires de calcaires construits, d'épaisseur métrique et hectarométrique. Cette formation, de 150 m de puissance moyenne, est datée du V3b-V3c (VERSET, 1988).

La formation de Tiberkit: La base de la formation, dont l'épaisseur est de 2000 m, est constituée de séquences grése-pélitiques à caractères de turbidites. Les olistolithes calcaires et divers niveaux turbiditiques carbonatisés ont livré des microfossiles du V3c (VERSET, 1988). Des faciès schisteux contiennent des goniatites qui indiquent le passage Viscéen-Namurien (TERMIER, 1936).