Faune benthique d'une rivière polluée : l'Oued Sebou à l'aval de la ville de Fès (Maroc)

Mohammed FKhAOU, Mohamed DAKKI & Mohamed-Aziz EL AGBANI

Mots-clés : Rivière, Pollution, Faune benthique, Maroc.

ملخص

آثار مدينة فاس على نهر سوب: دراسة الواسع الفعلي. تقدم من خلال هذه البحث المختص لنه Ebay أسفل مدينة فاس و المكمل للبحوث التي سبقت مجموعة من المسابحات في المعرفة البيئية والإيكولوجية لمخلط العشائير الهيروائية و آثار المياه المستعملة عليها. لذلك تم خلال المادة الفعلية ما بين 27/12/1984 و 16/10/1986 أخذ عينات عشوائية بست مجموعات أدت إلى الحصول على 133 نوعًا من العشائير الكلافية. وقد تم تحليل هذه العشائر بواسطة بعض المؤشرات وكذا تحليل المقابلة على تأثيرات مهمة على الحياة البيئية و إبراز ها الجديد.

تتنوع إعدادها الماقنة حسب درجة إحتمالها للنزول و درجة التعرض لديها.

RESUME

Les résultats d'une étude spatio-temporelle des peuplements benthiques du Moyen Sebou à l'aval de la ville de Fès sont exposés. Huit campagnes de prélèvements de faune ont été réalisées au niveau de six stations en amont et en aval du point de rejets (O. Fès) entre le 27/11/1984 et le 16/6/1986. Elles ont permis de recoller 133 taxons dont 88% de l'effectif appartient aux Oligochaètes. L'analyse de cette faune benthique par les descripteurs classiques montre que le peuplement est relativement bien équilibré et diversifié en amont du point de rejet, alors qu'il est plus déséquilibré et très appauvri plus en aval. L'utilisation de l'analyse factorielle dégage les modalités de succession des peuplements, ainsi que leurs caractéristiques écologiques (richesse, diversité ...) et leurs préférences.

ABSTRACT

The benthic fauna of a Moroccan polluted river: the Sebou downstream of Fes city. The results of a study of the macrobenthic fauna in the Middle Sebou river, downstream of the Fes city are exposed. Eight sampling campaigns have been made in six stations, from 27/11/84 to 16/6/86. A total of 133 taxa were collected and 88% of the individuals belong to Oligochaeta. The analysis of this benthic fauna with classical descriptors (richness, diversity...) showed that the communities up to the polluted point are relatively reach, whereas they are very poor in the lower stations. The factorial Analysis permitted to identify the succession patterns of the fauna and its ecological characteristics and preferences.

INTRODUCTION

L'analyse des communautés benthiques, dans le but d'apprécier le degré d'altération d'un milieu, est une méthode qui a fait ses preuves depuis le début de ce siècle. Elle constitue un complément indispensable à l'étude physico-chimique, capable d'exprimer à la fois les variations spatiales et temporelles de la pollution. Les organismes aquatiques réagissent à toutes les altérations et la biocénose garde longtemps la trace d'une pollution passagère. De ce fait, leur utilisation en tant que indicateurs de perturbations a fait l'objet de plusieurs études, dont nous citons celles de DESCY & PAUWELS-SULTEN (1978), COSTE (1978), EPPAIN (1977) ...pour les algues ou les mousses, celles de VERNEAUX & TUFFERY (1967), CROSS (1976), ANGER (1977) ...pour les macroinverterbrés, celles de LAURENT & CALVET (1977) ...pour les poissons.

Au Maroc, les premiers travaux concernant les peuplements benthiques des cours d'eau (DAKKI, 1979, 1985, 1986; EL AGBANI, 1984; MOHATI, 1985...) avaient pour principal objectif de rechercher une zonation biologique (ou biotypologie) de ces peuplements dans leur contexte naturel.

L'objectif du présent travail est l'étude d'une pollution urbaine, à travers une analyse des peuplements d'invertébrés utilisant des paramètres classiques de description des prélèvements (richesse, diversité...) et l'analyse multivariée des relevés de faune. Les modalités de succession des peuplements benthiques ainsi dégagées seront mises en relation avec les différentes perturbations du milieu.

MILIEUX D'ETUDE ET METHODES

SITUATION ET CARACTERISTIQUES GENERALES DES STATIONS D'ETUDE

Cette étude porte sur un long tronçon du Moyen Sebou, en aval de la ville de Fès. Six stations ont été choisies, cinq sur l'Oued Sebou et une sur l'Oued Fès (Fig. 1).

-Station A : elle est située sur l'Oued Sebou en amont de sa confluence avec l'Oued Fès, au lieu dit "Pont Portugais", à environ 12 km au NE de la ville de Fès; elle sert de témoin. C'est une station à faciès lotique très fréquent, avec des profondeurs de l'ordre de 15 à 30 cm vers les berges et de 60 à 80 cm au centre. Le substrat est composé principalement de galets et de sable. La végétation est représentée par des Labiées, des Malvacées, des Jonacées, ainsi que l'algue filamentueuse Chladorphora glomerata.

-Station B : située sur l'Oued Sebou, au lieu dit "Dar Cheikh Harazem", à 5 km en aval du confluant pollué; elle est soumise constamment aux rejets de la ville de Fès. Elle a été choisie loin de la source de pollution pour qu'on puisse prêsumer que le mélange des eaux y est complet. Le substrat est caillouteux, vaseux par endroit (avec 20-30% de matière organique). La végétation aquatique est dominée par l'algue filamentueuse Rhizoclonium sp. Vers les bords se trouvent des Labiées, des Malvacées, des Euphorbiacées et des Urticacées.

-Station C : située au lieu dit "Sidi Abdellah", à 18 km de la source de pollution, cette station présente des caractéristiques semblables à celles de la station B, avec cependant une diminution de la teneur du substrat en matière organique (10-15%).

-Station D : elle est située à 10 km de la station précédente, au lieu dit "Dar El Arsa". Le substrat est dominé par des galets et du sable. La matière organique est faiblement représentée dans le substrat (5%). La végétation diffère peu de celle de la station C, l'algue Rhizoclonium sp. étant toujours présente.

-Station E : elle se trouve à 38 km de la source de pollution et à quelques kilomètres en aval de la confluence Oued Sebou-Oued Inaouène. Le substrat est caillouteux, avec une teneur en matière organique variant entre 2 et 5%. La végétation est très variée, avec cependant la présence de l'algue filamentueuse Spirogyra sp. Cette station est très fréquentée par les habitants du Douar Oulad Slimane.

-Station F : elle est localisée sur l'Oued Fès à 1 km en amont de sa confluence avec l'O. Sebou. Elle se caractérise par un substrat noircrèt très vaseux (30-60% de matière organique) et par un dégagement d'odeurs très fétides. Ce cours d'eau, devenu un égout à ciel ouvert, véhicule jusqu'à l'Oued Sebou pratiquement tous les déchets liquides (voire solides) rejetés par la ville de Fès.

CARACTERISTIQUES PHYSICO-CHIMIQUES GLOBALES DU MILIEU D'ETUDE

Les résultats de l'étude physico-chimique sont exposés en détail dans un travail à part (FEKHAOUI & PATTEE, 1993); nous nous contenterons de donner ici un bilan de la qualité de l'eau des stations d'étude (Fig. 2).

Au niveau de la station A, en amont du site de pollution, l'eau est caractérisée par de faibles valeurs des indices de pollution chimique (conductivité, chlorures, azote ammoniacal, nitrates, orthophosphates ...) et organique (oxydabilité et D. B. O.5), ainsi que par des teneurs élevées en oxygène, alors que l'ammonium est à l'état de traces. La minéralisation de l'eau (720 µS/cm en moyenne) est cependant assez importante, en raison des fortes teneurs en chlorures, en sulfates et, surtout, en calcium provenant du substrat calcaire et marno-calcaire du Moyen Atlas. Le pH est légèrement alcalin (de l'ordre de 7,4) et l'ensemble du dioxyde de carbone est, par conséquent, présent dans l'eau essentiellement sous forme de bicarbonates (GOLTERMANN, 1971).

Dans l'Oued Fès (station F), l'oxydabilité et la D. B. O.5 sont très élevées et l'oxygène se trouve en quantité très réduite (2,6 mg/l en moyenne). En relation avec ces conditions, l'ion ammonium atteint des valeurs moyennes de 9,3 mg/l et représente la principale forme de l'azote. Les chlorures, les sulfates et les phosphates sont abondants; l'alcalinité, la dureté et la conductivité sont à leurs plus hautes valeurs.
Figure 1: Situation géographique des stations d'étude.
L'effet de la charge polluante sur l'O. Sebou est très net à la station B. Comparées aux valeurs obtenues à la station A, l'oxydabilité et la D.B.O.5 sont très élevées, comme la plupart des autres paramètres, tandis que la teneur en oxygène s'effondre.

En allant vers l'aval (stations C, D et E), la situation moyenne s'améliore pour la plupart des paramètres. Les valeurs moyennes des I. P. Q. (l'oxydabilité et la D.B.O.5) diminuent de façon significative jusqu'à la station E, pendant que la teneur en oxygène dissous monte en décrivant la classique "courbe en sac" et que la teneur en ammonium se réduit progressivement. Ce gradient d'auto-épuration est assez régulier; toutefois les sulfates, les chlorures et la conductivité enregistrent un accroissement entre les stations D et E, certainement sous l'influence de l'Oued Imaouène et des couches salifères de son bassin versant.

On constate donc que la macro-pollution organique due à la ville de Fès est ressentie au moins jusqu'à la station E, sur une quarantaine de kilomètres du cours moyen du Sebou.

L'efficacité de l'auto-épuration de l'eau est variable avec le temps. En fait, ce phénomène est la résultante de plusieurs processus, plus particulièrement la dilution des eaux polluées de l'O. Fès par celles du Sebou, la fixation des polluants dans les sédiments et les organismes, leur évacuation vers l'aval et leur destruction sur place (pour ceux qui sont dégradables). Ces actions se manifestent de façon différente selon les saisons, en fonction de la température, de la lumière, du débit, etc.

MÉTHODES D'ÉTUDE ET PROTOCOLE DE PRÉLEVEMENT

Pour l'étude biologique et la recherche des modalités de succession de la faune benthique en relation avec les variations des paramètres métaboliques, huit campagnes de prélèvement de faune ont été réalisées dans les six stations considérées, à l'aide d'un filet de type "Surber" de 0,025 m² de surface.

Pour tenir compte de la micro-répartition de la faune à l'intérieur des stations, chaque échantillon comporte six prélèvements effectués dans des biotopes qui diffèrent par la nature de leur substrat et
par leur vitesse de courant. Chaque échantillon de faune correspond à une surface de 0,15 m².

Afin de dresser un inventaire le plus complet possible du peuplement de chaque station l'échantillonnage quantitatif a été complété par des prélèvements qualitatifs à l'aide d'un filet troubleau, de pinces et de piègeages lumineux aux ultraviolets. Ces prélèvements permettent de rechercher les espèces rares, échappant à l'échantillonnage quantitatif, et de capturer des imagos d'insectes souvent indispensables pour confirmer les déterminations des espèces.

RESULTATS ET DISCUSSION

Les résultats obtenus sont représentés dans les tableaux I et II et dans les figures 3 à 10.

COMPOSITION DES PEUPLEMENTS

Les peuplements benthiques se composent de 133 taxons (identifiés, pour la majorité des groupes, jusqu'au niveau de l'espèce), dont 88% parmi les 134735 invertébrés récoltés sont des Oligochètes (voir Tableaux I & II)

RICHESSÉ TAXONOMIQUE ET DENSITÉ

La figure 3 illustre les variations spatio-temporelles de la richesse taxonomique des peuplements benthiques. L'évolution temporelle montre une stabilité dans l'affluent pollué (station F) avec un très faible nombre de taxons (4), alors que de fortes fluctuations saisonnières sont enregistrées dans toutes les stations de l'Oued Sebou. Un appauvrissement progressif s'observe depuis novembre 1984 jusqu'à février 1986, suivi d'une augmentation de la richesse dans toutes les stations (plus particulièrement en B et C). L'évolution spatiale des richesses taxonomiques traduit bien les diverses altérations du milieu; quelques remarques peuvent en être formulées.

- Le peuplement de l'Oued Fès est excessivement pauvre (quatre taxons).
- L'arrivée des eaux polluées dans l'Oued Sebou abaisse la richesse taxonomique de 82 (station A) à 52 (station B).
- Elle subit ensuite une augmentation progressive de l'amont vers l'aval, pour atteindre 69 taxons au niveau de la station E, témoignant d'une récupération partielle de la qualité des eaux du Sebou.

Figure 3: Évolution saisonnière de la richesse spécifique (R.S.) et de la densité (D) dans les différentes stations.
Code	A1	B1	C1	D1	E1	F1	G1	H1	I1	J1	K1	L1	M1	N1	O1	P1	Q1	R1	S1	T1	U1	V1	W1	X1	Y1	Z1	

Tableau II : Matrice de données biologiques.

TAXONOMIE	A1	B1	C1	D1	E1	F1	G1	H1	I1	J1	K1	L1	M1	N1	O1	P1	Q1	R1	S1	T1	U1	V1	W1	X1	Y1	Z1	

Cléments et autres espèces.

TAXONOMIE	A1	B1	C1	D1	E1	F1	G1	H1	I1	J1	K1	L1	M1	N1	O1	P1	Q1	R1	S1	T1	U1	V1	W1	X1	Y1	Z1	

Notes.
Les Diptères et les Oligochètes sont les groupes les plus diversifiés, avec un total de 17 et 33 taxons respectivement.

L'évolution longitudinale de la densité permet de distinguer les stations F, B et C (subissant les pollutions eutrophisantes), des stations A (en amont de l'affluent pollué) et E (la plus en aval).

Par ailleurs, la densité varie en sens inverse de la richesse; elle présente aussi des variations importantes en fonction des saisons, en liaison, principalement, avec le débit. Ainsi, on observe une forte baisse de densité en février 1986 (Fig. 3) coïncidant avec une augmentation brutale du débit.

DIVERSITE

D'après BOURNAUD & KECK (1980), l'indice de diversité de SHANNON & WEAVER (1949) présente l'intérêt écologique de fournir une "indication globale de l'importance relative" des différents taxons. Nous avons calculé pour chaque station, à chaque saison, l'indice de diversité de Shannon & Weaver qui intègre la richesse taxonomique et l'abondance relative des différents taxons suivant la formule :

\[H' = - \sum p_i \log_2 p_i \]

\[i = \text{abondance relative de l'espèce } i \quad (i = 1 \text{ à } S) \]

\[S = \text{nombre total d'espèces dans la station (ou relevé)} \]

Le rapport \(J' = H' / H'_{\text{max}} \) correspond à l'indice de diversité relative ou d'équitabilité, \(H'_{\text{max}} \) étant la valeur maximale (équale au nombre \(S \) de taxons) que l'indice \(H' \) peut atteindre.

D'une manière générale, \(H' \) et \(J' \) augmentent d'une part avec le nombre d'espèces et, d'autre part, avec la régularité de leur distribution d'abondance; autrement dit, un indice faible est une conséquence d'un faible nombre de taxons et/ou de la dominance de quelques espèces.

Les fortes variations de diversité (Fig. 4) reflètent des différences observées dans les profils d'abondance des taxons.

Dans les différents peuplements, les profils de variation des deux indices \(H' \) et \(J' \) présentent la même allure. Les valeurs les plus élevées sont enregistrées au niveau du Sébou à la station A (\(H' = 3.6 \) à 4.8; \(J' = 0.6 \) à 0.95); cette station de référence présente un peuplement bien diversifié où plusieurs taxons sont bien représentés.

Les valeurs les plus faibles sont enregistrées dans l'Oued Fès (\(H' = 0.5 \) à 1.65; \(J' = 0.3 \) à 0.94), où existent 3 à 4 taxons très abondants.

Plus en aval, une forte baisse de diversité des peuplements est enregistrée après la confluence O. Sébou-O. Fès (station B). Ensuite, la situation s'améliore au fur et à mesure qu'on s'éloigne de la source de pollution; les valeurs de \(H' \) et \(J' \) atteignent dans la station E respectivement 2.8-4.9 et 0.3-0.94 traduisant une situation proche de celle enregistrée en amont du site de pollution.

Cependant deux détails importants s'observent sur la figure 4 :

- une modification des profils de variation de la diversité \(H' \) lors des deux campagnes d'avril et de juin 1986; une augmentation des valeurs de \(H'_{\text{max}} \) qui traduisent une nette amélioration des conditions du milieu, favorisant une recolonisation du lit, particulièrement dans les stations les plus en aval (D et E). Cette amélioration coïncide avec les hautes eaux enregistrées lors de cette période;

- l'effet de la crue enregistrée pendant le mois de février 1986, visible dans les profils de variation de la richesse taxonomique et de la densité, est très difficile à mettre en évidence dans les profils des indices de diversité.

COMPOSITION QUALITATIVE ET QUANTITATIVE DES PRINCIPAUX GROUPES

La figure 5 visualise les taux de participation des principaux groupes zoologiques à la composition des communautés benthiques (à l'aide des abondances relatives).

Quatre grands groupes se partagent la quasi-totalité du benthos; les Oligochètes (88,4%), les Diptères (7,0%), les Trichoptères (2,1%) et les Ephéméroptères (1,8%). Le reste du benthos est représenté par les Mollusques (0,3%), les Coléoptères (0,2%), les Hétéroptères (0,01%), les Crustacés (0,074%), les Odonates (0,03%), les Hirudinées (0,03%), les Hydracariens (0,03%), les Plathelminthes (0,02 %) et les Plécoptères (0,007%).

Quelques commentaires concernant les groupes les mieux représentés sont fournis ci-dessous.

Oligochètes

Ils font l'objet d'une analyse à part, plus détaillée, vu leur importance dans l'évaluation de la qualité des eaux superficielles (FEKHAOUI & BAROUDI, 1993).

Ils occupent la première place parmi le benthos de ce cours d'eau. Leur plus faible abondance relative est notée dans la station A (16%), alors qu'elle est de 100% à la station F. Dans les autres stations du Sébou, elle varie en fonction des saisons et de l'éloignement de la source de pollution (entre 40% et 89%).

La prépondérance des Oligochètes en nombre de taxons (39) et en effectifs, réduit la signification des autres groupes. Les sédiments vaseux, riches en matière organique et en agglomérats de bactéries filamentueuses, favorisent leur présence et leur

Par ailleurs, la réduction de leur abondance le long de l'Oued Sebou en fonction de l'éloignement par rapport à la source de pollution s'explique par la réduction de la teneur de l'eau en matière organique, sachant que ces organismes sont dotés d'une adaptation rapide de leur densité aux variations brusques de la charge en matière organique.

La dominance des Tubificidés dans l'Oued Fès est à mettre en relation avec la forte charge organique et le faible taux d'oxygénation de ce milieu. Ce sont les seuls organismes benthiques qui subsistent dans ce milieu. Cette présence spécifique des Tubificidés dans les milieux subissant une forte pollution organique a été soulignée depuis fort longtemps (RICHARDSON, 1928; BRINKHURST, 1965; MILBRINK, 1973; BIESIADKA & KASPARZAK, 1977; LAFONT, 1977; GIANI, 1984, etc.)

Diptères

Ils sont présents dans toutes les stations de l'Oued Sebou et à toutes les saisons. Ils forment 7,0% de l'effectif du peuplement benthique, avec plus de 50% d'individus appartenant aux Chironomides. Par ailleurs, les cinquante espèces inventoriées se répartissent inégalement entre six familles (Tableau III), avec 38 espèces de Chironomides (voir NAYA, 1988).

Dans les stations du Sebou les plus perturbées (B et C), ils représentent 37% à 43% du benthos. Les taxons présents sont caractéristiques d'un milieu riche en matière organique et à faible teneur en oxygène dissous. C'est le cas typique de Chironomus thummi, le plus abondant (3,3%) et qui peut se développer massivement dans des milieux très pollués et très peu oxygénés (RHODE, 1912; THIENEMANN, 1941); c'est aussi le cas de Chironomus plumosus et de C. halophilus.
Dans les autres stations (D et E), on rencontre des espèces de milieux légèrement eutrophes mais bien oxygénés, ce qui témoigne dans ces stations d’un retour des conditions abiotiques vers leur état normal.

Trichoptères

Ils sont à tout moment présents principalement au niveau de la station A, où ils forment jusqu’à 39% de la communauté benthique, avec une prédominance d’Hydropsychidés. Dans le secteur pollué du Sebou, les deux seuls Trichoptères rencontrés appartiennent à cette même famille de filtreurs, *Hydropsyche maroccana* et *H. resmina*, bien qu’ils n’apparaissent qu’à partir de la station D.

Ephéméroptères

Sur les 12 espèces recensées, quatre seulement sont bien représentées: *C. luctuosa*, *E. rothschildi*, *Baetis pavidus* et *B. neglectus*. Ils occupent presque la totalité de ce secteur. Ces mêmes taxons sont les seuls qui apparaissent en aval, mais leurs densités les plus importantes sont notées dans la station E, en particulier lors des hautes eaux hivernales.

Figure 5: Variations d’abondance des neuf principaux groupes de macroinvertébrés benthiques du Moyen Sebou
Tableau III: Composition de la faune diptérologique.

<table>
<thead>
<tr>
<th>Familles et sous-familles</th>
<th>Nbre de Taxons</th>
<th>Abondance Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIRONOMIDAE</td>
<td>38</td>
<td>89,80</td>
</tr>
<tr>
<td>Chirononinae</td>
<td>17</td>
<td>58,50</td>
</tr>
<tr>
<td>Orthocladiinae</td>
<td>10</td>
<td>23,00</td>
</tr>
<tr>
<td>Diamesinae</td>
<td>6</td>
<td>6,50</td>
</tr>
<tr>
<td>Tanipodinae</td>
<td>4</td>
<td>1,40</td>
</tr>
<tr>
<td>Prodiamesinae</td>
<td>1</td>
<td>0,10</td>
</tr>
<tr>
<td>PSYCHODIDAE</td>
<td>4</td>
<td>0,62</td>
</tr>
<tr>
<td>EMPIDIDAE</td>
<td>2</td>
<td>1,75</td>
</tr>
<tr>
<td>CERATOPOGONIDAE</td>
<td>2</td>
<td>0,29</td>
</tr>
<tr>
<td>SIMULIIDAE</td>
<td>3</td>
<td>7,50</td>
</tr>
<tr>
<td>TABANIDAE</td>
<td>1</td>
<td>0,09</td>
</tr>
</tbody>
</table>

Par ailleurs, la rareté ou l’absence des Ephéméroptères dans les secteurs les plus pollués (stations B et C) lors des étages prononcés traduit leur sensibilité à la pollution (BOURNAUD & KECK, 1980), leur présence étant conditionnée par une teneur élevée en oxygène (PENNAK, 1978).

Mollusques

Absents en B et C et représentés par un faible nombre de taxons dans les autres stations, ils constituent moins de 0,3% du peuplement global. Les plus fortes abondances relatives sont enregistrées chez Melanopsis costellata (plus de 13% en A) et les plus faibles chez Theodoxus fluviatilis, récoltée une seule fois dans la station A en février 1986. Ils disparaissent totalement lors des fortes agressions chimiques (cas de la station B), mais l’enrichissement du milieu en matière organique (cas des stations D et E) favorise leur présence (HYNES, 1960). Ceci confirme leur tolérance à une légère eutrophisation du milieu (LEARNER & al., 1971).

Coléoptères

Ils sont représentés par un faible nombre de taxons (2 ou 3), peu abondants (0,2%), principalement en amont du site de pollution (station A). Ce groupe, considéré comme saproxène, disparaît complètement de la zone la plus perturbée et ne réapparaît que plus en aval, lors des périodes des hautes eaux (avril et juin 1986). Selon BERTRAND (1972), les larves et imagos des Coléoptères aquatiques montrent en général des exigences écologiques bien tranchées.

Groupes absents de la zone polluée

Tous les taxons sont absents dans la station A, en amont du secteur pollué.

Les Hétéroptères sont peu diversifiés (trois taxons) et peu abondants (0,01% du total).

Les Plecoptères sont représentés uniquement en amont de la zone polluée, par un seul taxon (Eoperla ochracea) très peu abondant (0,1 à 0,2% du peuplement). Selon DESPAX (1951) et AUBERT (1959), les larves de Plecoptères sont très exigantes vis-à-vis de nombreux facteurs physico-chimiques, en particulier de la teneur en oxygène.

Les Odonates sont représentés par deux taxons qui ont été récoltés à la station A ; ils constituent 0,1 à 2,8% du benthos de cette station.

Le reste de la faune benthique est composé de Crustacés (deux taxons), d’Hirudinées (deux taxons) de Plathelmintes (1 taxon) et d’Hydracariens, l’ensemble constituant 0,16% du total d’invertébrés échantillonnés.

En définitive, cette approche du peuplement benthique à l’aide des descripteurs classiques (diversité, abondance...) a permis de montrer qu’il est représenté par un nombre assez important de taxons spécialisés.

La station amont (A) présente le peuplement le plus équilibré et le plus diversifié, où la majorité des groupes sont représentés.

Dans l’Oued Sebou à l’aval immédiat des rejets de la ville de Fès, la pollution privilégie le développement de quelques groupes zoologiques, principalement les Oligochètes et les Diptères, au détriment des autres groupes rejetés saproxènes (Trichoptères, Ephéméroptères, Plecoptères...). Les indices de diversité soulignent le fort déséquilibre introduit dans les communautés par les Diptères et les Oligochètes. Cette agression atteint son maximum dans l’Oued Fès, milieu eutrophe et fortement dégradé que seuls les Oligochètes Tubificidés peuvent supporter.

Plus en aval, la situation s’améliore progressivement avec la réapparition de quelques taxons qui tolèrent une certaine charge organique, tels que le Trichoptère Hydropsyche maroccana, l’Ephéméroptère Baetis pavidus et les Mollusques Physappacuta et Ancylus fluviatilis; mais les Oligochètes et les Diptères restent toujours majoritaires. Les indices de diversité connaissent une augmentation sensible dans les stations les plus éloignées du site de pollution; on assiste alors à une distribution plus régulière des abondances.

Les variations saisonnières des peuplements benthiques se caractérisent par une période critique correspondant aux étages principalement en aval des rejets, où les eaux du Sebou sont parfois constituées en bonne partie par des eaux d’égouts. Pendant les hautes eaux enregistrées lors des campagnes d’avril et de juin 1986, la situation s’est améliorée, avec installation, même dans les stations les plus proches du point de rejet (stations B et C), d’un peuplement relativement diversifié auquel participent des Trichoptères, des Ephéméroptères et des Mollusques.
TYPOLOGIE SPATIO-TEMPORELLE DES PEAUPLEMENTS : APPROCHE PAR L'A.F.C.

L'analyse factorielle des correspondances, appliquée à une matrice "espèces x relevés", ressort simultanément les affinités spécifiques et cénitiques, permettant des ordinations (et éventuellement des regroupements) de relevés et d'espèces. Elle dégage un système d'axes factoriels (ou facteurs) permettant de réaliser des représentations planes de l'ensemble des colonnes et des lignes de la matrice. Chaque facteur exprime une part d'information sur l'analyse. Les structures dessinées par les nuages de variables sont souvent très significatives et facilitent la mise en évidence de phénomènes et facteurs écologiques.

Tous les relevés de faune sont réunis dans une matrice ternaire "127 taxons x 6 stations x 8 campagnes d'échantillonnage" (voir tableau II); cette matrice du type "faune x espace x temps" permet une typologie spatio-temporelle des relevés et des taxons. Ce type d'approche s'est révélé d'une grande efficacité dans la typologie des milieux méditerranéens, à forts contrastes saisonniers (DAKKI, 1986). Il est à noter que six des 133 taxons n'ont été récoltés qu'en un seul exemplaire; ils ont par conséquent été écartés de l'analyse, puisque leur part d'information est faible.

Afin de réduire les fortes disparités entre les abondances des taxons à forts effectifs (en particulier le cas des Oligochètes), nous avons procédé à une transformation des abondances en classes correspondant aux termes d'une progression géométrique de raison 2 (BOURNAUD & KECK, 1980). Cette évaluation semi-quantitative contient encore toute l'information nécessaire à l'analyse.

INTERPRETATION DES AXES ET TYPOLOGIE DES RELEVES

Les trois premiers axes cumulent 34,0% de l'information contenue dans la matrice des données de base (Tableau IV).

Dans le plan formé par les deux premiers facteurs de l'analyse (Fig. 7, 8 & 9), les stations et les taxons se distribuent le long d'une courbe structurale en forme de V, dénotant l'existence d'un gradient s'exprimant le long de l'axe 1.

Tableau IV: Corrélations et inerties des premiers axes de l'AFC.

<table>
<thead>
<tr>
<th>Axe</th>
<th>Corrélations canonicques</th>
<th>Pourcentage d'inertie</th>
<th>Inerties cumulées</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,365</td>
<td>18,1</td>
<td>18,1</td>
</tr>
<tr>
<td>2</td>
<td>0,166</td>
<td>8,2</td>
<td>26,3</td>
</tr>
<tr>
<td>3</td>
<td>0,155</td>
<td>7,7</td>
<td>34,0</td>
</tr>
</tbody>
</table>

Axe factoriel 1

Parmi les 16 variables mésologiques étudiées, quatre sont susceptibles de participer à l'explication de l'ordination des relevés et des espèces selon ce premier facteur de l'analyse. Il s'agit de l'oxygène, de la D.B.O₅, de l'oxydabilité et des nitrates, qui constituent de bons indicateurs de pollution organique. Ils permettent d'apprécier la charge en matière organique fermentescible d'un milieu et de suivre son pouvoir auto-épurateur par l'abaissement du taux d'oxygène dissous et l'apparition de sels minéraux (ion ammonium, nitrates, nitrites) issus de la biodégradation de cette matière organique.

La confrontation de l'axe 1 aux valeurs de ces quatre paramètres mésologiques montre une forte corrélation (Fig. 6), positive pour l'oxygène, négative pour les autres paramètres. Cet axe exprime donc un gradient de pollution (et d'auto-épuration). Il permet, toutefois, de répartir les relevés en trois groupes (Fig. 7).

En examinant la distribution le long de l'axe 1 des relevés de chaque station polluée du Sebou, on constate que les relevés 7 et 8 et (parfois 6) se détaillent des autres relevés pour se déplacer en direction des "eaux propres". Ces relevés 7 et 8 correspondent aux hautes eaux hivernales, ce qui nous permet de qualifier de spatio-temporel le gradient de pollution défini ci-dessus. Les relevés de la campagne 6, correspondant aussi à une période de hautes eaux mais estivale, se comportent différemment des relevés 7 et 8 : ils tendent à se positionner entre les stations A et F tout en "virant" davantage vers la station A, sans que l'ordre de leur succession le long du gradient de pollution ne soit aussi profondément affecté que lors des crues hivernales.

Axes factoriels 2 et 3

L'axe 2 ne pourrait pas avoir de signification particulière, puisque la structure du nuage dans le plan F1-F2 a une forme en cloche, avec une bonne ordination le long de l'axe 1. Ce phénomène, courant dans le cas des gradients prononcés, est souvent noté sous l'appellation "d'effet Gutmann" (LEGENDRE & LEGENDRE, 1979).
L'axe 3 sépare au niveau des stations polluées du Sebou, les relevés correspondant à la crue estivale du reste des relevés de ces stations. Cette séparation, déjà observée dans le plan F1-F2, est plus prononcée suivant l'axe 3 (Fig. 8).

Typologie des relevés

Vu l'interprétation des axes, la structure du nuage des relevés obtenue par l'AFC peut être résumée en un gradient assez bien exprimé le long de l'axe 1 et parfaitement assimilable à un gradient spatio-temporel. La superposition entre gradient temporel et gradient spatial dans une biotypologie a été mise en évidence dans le secteur non pollué du haut Sebou (DAKKI, 1986) où elle fut corrélée avec les variations spatio-temporelles des températures.

Dans le présent cas, le gradient temporel est plutôt lié au débit; il est visible surtout dans le secteur pollué du Sebou, où l'effet des crues est prépondérant dans l'amélioration de la qualité des eaux par dilution.

Les trois premiers facteurs de l'analyse permettant également de distinguer le long de cette structure trois groupements de relevés présentant des différences assez significatives entre eux.

- Le premier noyau correspond aux relevés réalisés au niveau de la station A, en amont des rejets.
- Le deuxième noyau, à l'opposé du premier, est formé principalement par les relevés réalisés dans l'Oued Fès (station F).

Figure 6: Distribution des relevés selon leurs coordonnées sur l'axe F1, en fonction de leurs teneurs en oxygène, nitrites, oxydabilité et DBOS
Le troisième noyau, qu'on pourrait appeler noyau "d'étage", comprend le reste des relevés réalisés dans l'Oued Sebou lors des différentes campagnes, mais ordonnés selon un "gradient hydrologique". Celui-ci oppose les relevés effectués en été (débit faible) à ceux effectués en période de hautes eaux. Le relevé réalisé au cours de la crue de février 1986 se détache nettement de ce groupement.

Au niveau des deux premiers noyaux, l'aspect temporel parait être sous-jacent à l'aspect spatial. L'impact des rejets est si important que les différences (ou variations) saisonnières dans l'Oued Fès sont peu apparentes; ce qui ne permet pas à certains facteurs, tel que le débit, de s'exprimer. De même qu'au niveau de la station A, où les eaux du Sebou sont constamment de bonne qualité, les modifications saisonnières du peuplement benthique sont peu apparentes.

MODALITES DE SUCCESSION DE LA FAUNE

La projection des 127 taxons sur le plan F1xF2 rend compte de leur comportement (individuel ou par groupe) en fonction de la qualité de l'eau. La figure 9 montre une succession des taxons suivant une structure régulièrre en forme de croissant; ceci révèle l'existence d'un continuum associé au gradient de qualité de l'eau exprimé par l'axe 1.

A une extrémité de cette structure, se trouvent des taxons exigeant une bonne qualité des eaux. Viennent ensuite des taxons capables de tolérer une charge organique plus ou moins forte. Enfin vers l'extrémité "polluée" du gradient, tous les taxons disparaissent, excepté le groupe des Tubificidés.

La représentation de l'amplitude d'habitat des différents taxons sur l'axe 1 (Fig. 10) suivant la méthode proposée par CHESSEL & al. (1982), nous aide à distinguer quatre grands groupes d'espèces.

Groupe A

Il contient des taxons que nous pouvons qualifier de polluo-sensibles, présents uniquement en amont du site de pollution. Nous en citons les plus abondants, en particulier les Trichoptères *Hydropsyche lobata*, *Paduniella vandeli*, *Setodes acutus*, *Psychomyia pusilla*, les *Ephéméroptères* *Cloeon dipterus*, *Centropilum pennulatum*, *Ephemera glaucops*, *Ephoron virgo*, *Oligoneuriopsis shkoune*, *Rhithrogena* sp. et *Choroterpes* (s.s.) *picteti*, le *Pélicoptère Eoperla ochracea*, le *Coléoptrate Limnius intermedius* ou les *Diptères Hemerodromia* sp., *Ablabesmyia monolis*, *Eukieferiella claripennis*. Toutes les espèces de ce groupe montrent de faibles amplitudes d'habitat.
Groupe B

Ce groupe est composé principalement d'Oligo-<ref>
études et de Diptères préférant les zones propres,
mais moins sensibles que ceux du groupe A. Il
regroupe le plus grand nombre de taxons (66),
lesquels caractérisent un type de biotope où l'auto-
épuration des eaux est bien avancée. Il regroupe deux
catégories d'espèces :

- des espèces exclusives de ce groupement (à faibles
amplitudes d'habitat), tels que les Diptères
Prodiamesa olivacea, *Faratendipes* sp., *Cricotopus
bicintus*, *Microtendipes* sp. ou l'Ephéméroptère
Baeotis pavidus ;
- des espèces à larges amplitudes d'habitat; les plus
abondantes sont le Trichoptère *Hydropsyche
maroccana*, les Ephéméroptères *Ecdyonurus
rothschildi*, les Chironomidés *Tanytarsus* sp.,
Tvetenia calvescens, *Orthocladius* (Eurthocla) sp.,
le Tabaniidé *Tabanus* sp., la Simulie *Wilhelmina
sergenti*, les Oligochètes *Aelosoma* sp., *Nais
bretscheri*, *N. christinae*, *Pristinella rosea*,
Psammaryctides barbatus, *Tubifex ignotus*, *Henlea
sp.*, *T. claparedi* et *Haplotaxis gordioides*,

\[W_i(q) = \sum \frac{\mu_i(q) - \lambda_i(q) x_i(q)}{\sigma_i(q)} \]

\(\mu_i(q) \) = variance de la position de l'espèce i
sur l'axe q ; amplitude d'habitat
\(\lambda_i(q) \) = numéro du facteur ou axe considéré
\(x_i(q) \) = espèce
\(x \) = station
\(y_j \) = effet total de l'espèce i dans la station j
\(y \) = effet total de l'espèce i dans toutes les stations
\(y \) = coordonnée de l'espèce i sur l'axe q
\(y (q) \) = coordonnée de la station j sur l'axe q
\(\lambda (q) \) = valeur propre de l'axe facteur q

Figure 10 : Amplitudes d'habitat des différents taxons ordonnés selon leurs coordonnées sur l'axe Fl.
l’Onodante *Onychogomphus uncatus* et le Mollusque *Melanopsis costellata*.

Groupe C

Groupe D

Situé du côté opposé du groupe A, il comprend des espèces caractéristiques de milieux pollués, chargés en matière organique et pauvres en oxygène; elles peuvent être séparées en deux sous-groupes.

- Le sous-groupe Da, constitué principalement des Chironomidés *Syndamesa* sp., *Limnochironomus nevrosus*, *Pseudodamesa nivosa*, *Chironomus plumosus*, *C. hummi* et *C. halophilus*. Ils ont tous de faibles amplitudes d’habitat. Ils se limitent à la station la plus polluée du Sebou mais ne remontent pas jusqu’à l’Oued Fès, trop pollué pour eux. Ces taxons sont parmi nos Diptères les plus tolérants à la pollution organique.

- Le sous-groupe Db, caractérisé par les Oligochètes *Tubificidés Tubifex tubifex*, *Limnodrilus udekenianus* et *L. hoffmeisteri*, qui sont les seules espèces capables de se développer dans l’Oued Fès (bien que présentes dans toutes les stations, ce qui explique leurs grandes amplitudes d’habitat, comparées à celles des taxons du sous-groupe précédent). Ces trois espèces sont très connues pour leur pollution-résistance par plusieurs auteurs (BRINKHURST & KENNEDY, 1965; DUMICKA, 1978; ASTON, 1973; etc.).

CONCLUSION

En conclusion, nous considérons que l’approche de la pollution organique à l’aide de l’analyse des peuplements benthiques a permis de préciser les caractéristiques écologiques de ce cours d’eau et de confirmer le diagnostic de pollution établi par l’analyse hydrochimique.

L’analyse à travers les descripteurs classiques (diversité, abondance …) montre que la faune étudiée comprend un nombre important de taxons spécialisés, pouvant être qualifiés d’indicateurs.

Par ailleurs, les modalités de succession basées sur les caractéristiques écologiques et les préférences des différents taxons vis à vis des différents types de biotopes, ont été mises en évidence par l’analyse multivariée. Notons à ce propos que l’ampleur du facteur temps (exprimé par les variations saisonnières du débit) se dégage assez bien dans les secteurs pollués de l’Oued Sebou, mais beaucoup moins dans la station A (démoins non pollué) et dans l’Oued Fès (où la pollution est chronique).

Sans vouloir être exhaustif, cette étude fournit un bon nombre de données en vue de la connaissance du comportement de la faune benthique des cours d’eau marocains vis à vis des pollutions organiques. Elle a en outre confirmé la validité et l’utilité de l’approche faunistique (avec ses variantes méthodologiques) dans les diagnostics rapides des pollutions.

REFERENCES

Adresse des auteurs:

Département de Zoologie & Ecologie Animale
Institut Scientifique
Avenue Ibn Batutta, B. P. 703.
Rabat-Agdal (Maroc)