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The Tafilalt magmatic complex (Eastern Anti Atlas, Morocco): New insights into
petrology and geochemistry; and preliminary interpretation
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Abstract. In the eastern Moroccan Anti-Atlas, the Tafilalt Province exposes folded Cambrian-Visean series intruded by a number of dykes,
sills and laccoliths. These intrusions constitute the Tafilalt Magmatic Complex, TMC. New field, petrographic and geochemical data from
the TMC provide an opportunity to decipher the nature of their sources and approach their geotectonic significance. Three petrographic
facies have been recognized, i.e., olivine dolerites in some of the sills, kaersutite-bearing lamprophyres occurring in dykes and sills, and
eventually gabbro-syenites in the laccoliths. The olivine dolerites are composed of olivine, pyroxene, plagioclase and kaersutite.
Geochemically, they show high values of MgO, Mg#, Cr and Ni indicating a genesis with a minor fractionation in olivine and clinopyroxene.
Geochemical data of these rocks include high LREE with (La/Yb)Pm ≈2.44 with no Eu anomalies and a discrete negative Ti anomaly. The 
kaersutite lamprophyres (dykes and sills) and the gabbro-syenites (laccoliths) contain low percentages in olivine and pyroxene, but display
abundant kaersutite and high Fe/Mg content. The analyzes show more or less similar values in MgO, Mg#, Cr, Ni and high LREE values
with (La/Yb)Pm≈6.86. They share geochemical characteristics in Sr and Ti anomalies indicating a fractionation of plagioclase and ferro-

titanium oxides. All the TMC rocks display a high-Ti OIB alkaline character and show ratios (Gd/Yb)C > 2 and Ti/Y ≥ 500 
which attest for a genesis from mantle plume. The TMC rocks cannot be ascribed to any Devonian-Carboniferous magmatism
for structural reasons. They differ geochemically from the tholeiitic intrusions of the Central Atlantic Magmatic Province.
They have to be ascribed to a post-Visean and pre-Triassic magmatic event.
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Résumé. A l’extrémité orientale de l’Anti Atlas marocain, la province de Tafilalt expose des séries plissées cambro-viséennes intrusives par
un certain nombre de dykes, sills et laccolithes. Ces intrusions constituent le complexe magmatique de Tafilalt, CMT. Les données
pétrographiques du CMT permettent d’examiner la nature de leurs sources. Selon le mode de gisement, trois faciès de roche se distinguent.
Les dolérites à olivine reconnues dans certains sills, les lamprophyres à kaersutite répandus dans les dykes et sills et un dernier consistant en
gabbro et syénite dans les laccolithes. Les dolérites à olivine - sills groupe1 se composent par des cristaux d’olivine, pyroxène, plagioclase et
kaersutite. Géochimiquement, ils présentent des valeurs élevées en MgO, Mg#, Cr et Ni indiquant une genèse avec un fractionnement mineur
en olivine et clinopyroxène. Les données géochimiques pour ces roches incluent des valeurs en LREE élevées avec (La/Yb)Pm≈2.44, avec 
aucune anomalie en Eu et une anomalie négative discrète en Ti. Les lamprophyres à kaersutite (dykes et sills groupe2) et les gabbros-syénites
(laccolithes) contiennent de faibles pourcentages en olivine et pyroxène mais présentent une abondance en kaersutite et ferromagnésiens, les
analyses chimiques montrent des valeurs plus ou moins similaires en MgO, Mg#, Cr, Ni et des valeurs élevées LREE avec (La/Yb)Pm≈6.86. 
Ils partagent des caractéristiques géochimiques en anomalies négatives en Sr et Ti indiquant un fractionnement des plagioclases et oxides
ferro-titanés. Toutes les roches du CMT affichent un caractère alcalin de type OIB riche en Ti et se positionnent des rapports en (Gd/Yb)C >2
et Ti/Y ≥ 500 qui plaident pour une genèse à partir d’un panache mantellique. Le magmatisme TMC ne peut être rattachés structuralement au 
Dévono-Carbonifère, ni géochimiquement au CAMP. Il est fort probablement lié à un événement fini-Paléozoïque qui serait post-Viséen et
anté-Triasique.

Mots-clés. Anti-Atlas, Tafilalt, Magmatisme, Panache, Riche en Ti, Fini Paléozoïque.
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INTRODUCTION

The Anti-Atlas is a thick-skinned Variscan belt showing
Precambrian inliers beneath a mildly folded Paleozoic cover
(Fig.1). At the eastern tip of the belt, i.e., in the Tafilalt
region, the lower Cambrian to Carboniferous folded series
are intruded by a number of mafic dykes, sills and laccoliths
(Destombes & Hollard 1986, Álvaro et al. 2014a, Benharref
et al. 2014b-c-d, Pouclet et al. 2017).

These intrusions are locally secant on the Ordovician-
Early Carboniferous formations and are widespread in the
form of sills within the Silurian, Devonian and Tournaisian-
Visean formations. A complex of laccoliths occurs locally in
the Famennian formations and at the Devonian-
Carboniferous interface. The age of this post-Ordovician
magmatism is controversial. Pouclet et al. (2017) ascribed
the post-Ordovician dolerites to two pre-Variscan events,
Devonian and Carboniferous, respectively, while Chabou et
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Figure 1. Structural context of the northern West African Craton (WAC) after Michard et al. (2017). PASZ: Pan-African suture zone; SAF:
South Atlas fault.

Figure 2. Digital Elevation Model of the Eastern Anti-Atlas with main structural domains, major folds and localities. EC: Erg Chebbi
(Merzouga dunes), Mf: Mfis, Zg: Znaigui folds, AA: Al Atrous, Td: Tadaout, Am: Amessoui, SA: Sheib Arras, OH: Oum Hdej, Tk: Tijkhet,
Oz: Ouzina, Rs: Rissani, WC: Widane Chebbi, Tz: Tawz, Bg: Begaa. Framed: Figure. 3.

al. (2017a-b) suggested a single event that would be post-
Variscan, although being distinct from, and likely older than
the Central Atlantic Magmatic Province (CAMP) event (ca.
200 Ma; Sebai et al. 1991, Youbi et al. 2003, Verati et al.
2007, Davies et al. 2017).

In this article, we present an analysis of the geochemical
data available (Álvaro et al. 2014a, Benharref et al. 2014a-b-
c, Pouclet et al. 2017) or obtained during the present work in

order to check the uniqueness or plurality of their origin and
to discuss their potential source and emplacement
mechanism.

GEOLOGICAL SETTING

The Tafilalt is located at the junction between the Anti-
Atlas and Ougarta ranges (Fig. 1). Belonging to the eastern
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Figure 3. Geological map of the study area, generated from maps of Álvaro et al. (2014a), Benharref et al. (2014a), Koukaya et al. (2014)
and Tahiri et al. (2014).

tip of the Anti-Atlas, the Tafilalt Paleozoic units are limited
in the north by the Cretaceous deposits of the sub-Atlas
zone, in the south by those of the Kem-Kem plateau, in the
east by the Meso-Cenozoic Hamada of Guir, and in the west
by the Ougnat-Ouzina Axis and the Maider basin (Fig. 2).
The Tafilalt Paleozoic series rest on a Neoproterozoic
substratum, which crops out in the Ougnat massif and to the
NE of Erfoud, as well as to the SW of Ouzina (Fig. 2). They
range from the Early Cambrian to the end of the Early
Carboniferous. This sequence is mainly made of sandstones,
pelites and shales in the Lower Paleozoic, with increasing
proportion of limestones, marls, and calcareous sandstones
from the Silurian upward (Figures 3, 4) (Hollard 1974 et
1981; Wendt 1985 et 1988, Destombes et al. 1986; Baidder
et al. 2007, 2008, 2016, Clerc et al. 2013, Álvaro et al.
2014a, Benharref et al. 2014b-c-d). The Tafilalt region is
slightly deformed and belongs to the external domain of the
Hercynian belt whose metamorphic internal domain
develops in the Atlas-Meseta domain further to the north
(Michard et al. 2010). The Paleozoic rocks are organized in
a succession of anticlines and synclines with frequent

sigmoidal or even boomerang axial trajectories. These forms
have been interpreted as the result of polyphase Hercynian
deformation and control of fault blocks (Baidder et al.
2016). The anticlines of the Ougnat-Ouzina Axis show
Cambrian and Ordovician terrains, whereas those of the
Tafilalt basin, such as the Znaigui or Mfis (Dboa)
anticlines,expose Devonian units, and the synclines (such as
Amessoui or Marzouga synclines) preserve the Devonian
and Carboniferous units (Fig. 3). The magmatic event here
studied is essentially represented by a multitude of doleritic
dykes and sills schematically shown in Fig. 4. In the area
particularly studied here (Fig. 3), the sills become
particularly thick and are labeled laccoliths near Mfis (Dboa
laccolith; Pouclet et al. 2017).

TAFILALT MAGMATIC COMPLEX:

Field relationships:

The Tafilalt magmatic complex consists of dykes, sills
and laccoliths. The main, first-order feeder dykes that have
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Figure 4. Generalized stratigraphic column of the Tafilalt region adapted from Baidder et al. (2016).
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Figure 5. Geological map and stratigraphic column of the Dboa laccoliths system, after the Geological map of Morocco scale 1:50.000, Mfis
quadrangle, and this work.

several kilometers length. These dykes follow km-scale fault
zones such as the Ouzina, Znaigui and Mfis faults (Figures.
3, 5). Their magmatic material is brecciated and rich in
xenoliths and phenocrysts, especially biotite (Fig. 6A-B).
The second-order feeder dykes show lesser dimensions, with
a few meters to a few tens of meters lengthiness. They are
more frequent and ensure vertical communication between
sills and laccoliths (Fig. 6C). The second-order dykes may
contain fragments of reworked first-order dykes (Fig. 6D)
(see below), which indicates the existence of two magmatic
pulsations. The sills are of unequal importance, their
thickness vary from <1 m to 20 m locally, even along the
same sill. They are mostly localized in the weakness zones
between incompetent and competent layers (e.g., Silurian
shales or Visean marly-pelites on the one hand, limestone or
sandstone beds on the other hand) (Fig. 6E). A sill can
change laterally its position in the stratigraphic pile,
especially in a thick marly series where rheology and space
are favorable. The most illustrative case of this phenomenon
is observed in the marls of the Emsian along the Wadi Al
Atrous (4°01'26''W, 30°56'00'N) (Fig. 6F) where the sill is
inserted along the Emsian limestone (d3a)-Emsian marls
(d3b) interface and laterally crosses the Emsian marls to
extend along the Emsian marl-Eifelian limestone interface
(d4). The petrography of the sills is constant whatever the
stratigraphic level of emplacement. The laccolith
architecture is observed in two areas: (i) in the Znaigui area,
where two second-order feeder dykes originate from a first-
order dyke through the Znaigui fault, feeding a mushroom-
shaped laccolith that is emplaced at the base of the lower

Famennian marls (d7a) (Fig. 6D-G-H); (ii) in the Jbel Dboa
in the core of the Mfis anticline, which exposes a laccolithic
complex of five interconnected laccoliths laterally
superimposed in staircase setting (Figures 5, 7, 8). The lower
laccolith is hosted by the marls of the Early Famennian (d7a)
and the upper one occurs in the shales of the Aoufilal
Formation (d7c). The laccolith 1 (LA1) intrudes the base of
the Famennian at about twenty meters above the Frasnian-
Famennian boundary. It extends on 1.9 km long with a
thickness of 120 m in its axial part. Several second-order
feeding dykes start from laccolith 1 to feed laccolith 2
(LA2). The LA2 is shifted laterally relative to the LA1 and
occupies the middle part of the Early Famennian marls
(d7a). Its lateral extension exceeds 820 m, while its
thickness reaches 80 m in its axial part. LA3 is a small
laccolith (212m over 115m in size) which occupies the top
part of the Famennian marl (d7a) and corresponds to a
satellite of LA2. The LA3 has, however, connections with
the LA2 and LA4 laccoliths. The latter has the same
importance as the LA1 and the LA2 and is set up in the
upper part of the Famennian goniatite limestones (d7b). LA4
is 930 m long and 539 m wide. The last laccolith LA5
occurs in the basal and shaly part of the Aoufilal Formation
(d7c). It is relatively small (150m over 32m) and fed by a
dyke linking it to LA4.

Petrography

In this section, we study the petrography of the TMC
according to type of intrusion (dykes, sills and laccoliths).
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Figure 6. (A) Ouzina dyke with
enclave; Xn: Xenoliths, Px:
Phenocrysts. (B) Feeder dyke. (C)
Connection dyke between two
laccoliths (LA 4, LA5). (D) Interaction
between two feeder dykes; fragment of
dyke1 is seen as xenolith in dyke2,
pulled off and carried in the ascending
dyke 2. (E) Sill in the Silurian-
Devonian interface. (F) Sill
intersecting obliquely the Emsian
limestones. (G) Sub-volcanic Znaigui
system; LZ: Znaigui laccolith, DZ :
Znaigui dyke. (H) Znaigui laccolith.

The TMC supply system is provided by first-order dykes
that follow the main faults of the sector (Ouzina, Znaigui
and Mfis faults). These dykes can feed sills and laccoliths
directly. Feeding can also be done through second-order
dykes feeding themselves from first-order dykes.
Brecciation is a common character to all dykes. However,
this character is more pronounced in the first-order dykes

than in the second-order ones. On the other hand, first-order
dykes are richer in xenocrysts of biotite, feldspar and quartz.
They are also richer in volcanoclastic and plutonic enclaves
probably uprooted from the Ediacarian substratum (Fig. 6A).
Petrographically, the dykes are kaersutite lamprophyres
showing microdoleritic to fluidal texture. They are
composed mainly by plagioclase and kaersutite phenocrysts
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Figure 7. Dboa laccoliths system with five laccoliths labeled in ascending order LA1-5 (see interpreted satellite image and cross-section Fig. 8).
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Figure 9. (A&B) Kaersutite lamprophyre dyke, (C&D) Olivine Dolerite; (C) Core facies intergranular to intersertal texture and (D) Microlitic texture
border facies, olivine and clinopyroxene relica; (E&F) Kaersutite lamprophyres; (G&H) Coarse grained laccolithic facies; (G) gabbroic facies and
(H) syenitic facies. Ol:olivine, Cpx: clinopyroxene, Pl: plagioclase, Ks: kaersutite, Bt:biotite, Sr: sericite, Op : opaque mineral.
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Figure 10. (A&B) Nomenclature diagram SiO2 vs Na2O+K2O after Cox et al. (1979) and (C) after De la Roche et al. (1980).

less differentiated chemical composition, with SiO2 levels
between 39.03 and 52.93 %, MgO from 2.22 to 7.5%, Fe2O3t
from 5.14 to 11.5%, TiO2 from 1.51 to 2.78% and alkali
from 4.29 to 10.48%. Laccoliths rocks present chemical
concentration of SiO2 ranging from 39.03 to 52.93%, MgO
from 2.22 to 7.5%, Fe2O3 from 5.14 to 11.5%, TiO2 from
1.51 to 2.78% and total alkali (4.29<Na2O+K2O<10.48
wt%).(Tableau). In the nomenclature diagram (Cox et al.
1979), the dykes occupy basanites-tephrites and hawaites
domains (Fig. 10A). As for the sills, the application of the
same diagram confirms the distinction between the two
petrographic groups. Group 1 sills (olivine dolerites) fall
into alkali basalts field, while group 2 sills (kaersutite
lamprophyres) mostly plot in the basanite-tephrite field with
some in the hawaites and mugearite fields (Fig. 10B).
Laccoliths show chemical compositions similar to those of
dykes and sills of the petrographic group 2. In the De la
Roche et al. (1980) diagram (Fig. 10C), they correspond to
essexites (monzogabbros, monzodiorites, monzonites and
monzosyenites), syenodiorites and syeno-gabbros.

On the other hand, all the TMC rocks display Ti/Y ratios
between 427 and 847, generally higher than an average of
500, and allow us to consider them as Ti-rich basalts (Xu et
al. 2001, Xizo et al. 2004, Lai et al. 2012). Dykes are

characterized by an Mg# (MgO/(MgO+FeO)) between 47-63
with negative Sr (Sr/Sr*=0.71), Ti (Ti/Ti*=0.59) anomalies
and positive Eu anomaly (Eu/Eu*=1.05). The (La/Yb)Pm

ratio varies between 4.57 and 7.68 with richness in REE
(ΣREE=317-557) (Fig. 11). The olivine dolerites of group 1 
are characterized by an Mg# between 52-61 with positive Sr
(Sr/Sr * = 1.21) and Ti (Ti/Ti * = 0.99) anomalies; a ratio
(La/Yb)Pm between 1.4-2.2 and a low abundance of REE
(ΣREE = 97 to 174ppm) (Fig. 11). The group 2 sills 
(kaersutite lamprophyres) are characterized by an Eu (Eu/Eu
* = 1.07) and negative anomaliesof Sr (Sr/Sr * = 0.76) and
Ti (Ti/Ti * = 0.65), which respectively indicate a significant
fractionation of plagioclases and ferro-titanated oxides. They
are rich in REE (ΣREEavg = 449ppm) with their large
fractionation (La/Yb)Pm between 3.9-10.24 (Fig. 11). The
laccoliths have Mg# (43-60), Sr (Sr/Sr*=0.70), Ti
(Ti/Ti*=0.53) and Eu(Eu/Eu*=1.07). The laccoliths REE
sums areΣREE= 315 – 561 and the ratio (La/Yb)Pm between
4.91 and 8.51 (Fig. 11). The TMC rocks have a Nb and Ta
positive anomalies suggesting low crustal participation in
the genesis of their fluids, whereas the Zr-Hf positive
anomaly for TMC dykes, laccoliths and group 2 sills
involves late hydrothermal fluid intervention in the
magmatic fluid (Fig. 11) (Roddaz et al. 2002, Pouclet et al.
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Figure 11. Chondrite normalized after McDonough & Sun (1995), Primitive mantle normalized after Sun & McDonough (1989) spider
diagrams for whole-rock; (A&a) Dykes, (B&b) Sills and (C&c) Laccoliths.

2017). They share also negative anomalies in Sr and Ti
indicating plagioclase and ferro-titane oxides fractionations
(Fig.11). On the other hand, the negative anomalies in K and
Rb are probably related to the fusion source, which suggest
the presence of a phlogopite mantle (Ngounouno et al.
2006). It seems clear that TMC have slight geochemical
variations, the parallelism of their profiles indicates that they
probably come from the same deep source (Fig. 11). The
concentration of some elements versus Zr (Fig. 12) shows a
clear differentiation trend. Group 1 sills appear the least
differentiated compared to the other components of the TMC.

Magmatic source

The TMC is enriched in light REE with respect to heavy
REE with no Eu-anomalies (Fig. 11). This is clearly

different from the typical N-MORB diagrams, but similar to
the OIB (Oceanic Island Basalt) or IAB (Island Arc Basalt)
and typical pattern of alkali basalts. They do not display a
negative HFSEs anomaly (K, Sr and Th), similar to those of
CFBs (continental flood basalt). The Ti/Y ratio is constant
during fractional crystallization (Peat et al. 1992), generally
used to discriminate the rock type (Xu et al. 2001, Xiau et
al. 2004, Lai et al. 2012). The TMC have generally high
TiO2 composition (Tableau) with Ti/Y ratios higher than
500. In Ti/Y vs. Mg # and Ti/Y vs. Sm/Yb plots (Lai et al.
2012), the rocks are located in the field of Ti-rich basalts
(Fig. 13). The TMC rocks plot in the field of MORB-OIB in
the Nb/Yb versus Zr/Y diagram (Fig. 14C). The Yb vs
La/Yb plot indicates that TMC have a trend of partial
melting and is less evolved compared to fractional
crystallization. A garnet source is suspected if (Gd/Yb)C> 2
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Figure12. Whole-rock co-variation diagrams for selected elements Ta, La, Nb, Gd vs Zr (symbols as Fig. 10).

Figure13. Ti/Y vs.Mg# and Ti/Y vs. Sm/Yb diagrams after Lai et al. (2012) for the TMC, LT: Low-Ti; HT: High-Ti.
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Figure 14. La/Sm vs. Sm/Yb, Yb vs. La/Yb, and Nb/Y vs. Zr/Y, diagrams to determine the possible mantle sources and the partial melting degrees of
sources.(A) & (B) after Rooney (2010). Normalization values of the chondrite C after Sun & McDonough (1989). (C) after Condie (2005).

or (Tb/Yb)C> 1.8 (Rooney 2010, Álvaro et al. 2014b). In the
diagram (La/Sm)C vs (Gd/Yb)C, the TMC is in the garnet
source domain, indicating a genesis at a deeper source of
asthenospheric mantle and confirm the conclusions obtained
by Álvaro et al. (2014c). This diagram indicates as well that
the olivine dolerites - group 1 sills are distinguished from the
kaersutite lamprophyres - group 2 sills by a higher degree
and lower depth of melting. The La/Ta and La/Nb ratios are
generally used to distinguish between a lithospheric and
asthenospheric mantle source, and the higher values are
devoted to those of a lithospheric source with La/Ta> 22 and
La/Nb> 1.8 (Coish & Sinton 1992). The TMC La/Ta ratio is
between 15 and 31.45 (average 22.22). The ratio La/Nb is
from 0.76 to 1.5, (average 1.80). These values are indicative
for an asthenospheric to sub-lithospheric mantle source for
the TMC. According to the Zr/Y vs. Nb/Y diagram of
Condie (2005), the TMC rocks are located in the OIB plume

source (Fig. 14). The Zr/Y and Nb/Y ratios are used by
Fitton et al. (1997) to characterize the mantle plume source.
Zr and Nb are trace elements and have similar properties
during mantle melting while Y is slightly incompatible with
Zr and Nb. Thus, different partial melting degrees of the
same peridotite source should produce different basalt’s
evolution trend (Xijun et al. 2016). The TMC rocks display
a ratio in Zr/Y between 7.94 and 24.10, in Nb/Y between
1.94 and 7.04. The ∆Nb TMC’s after Fitton et al. (1997) is
mostly greater than 0, corresponding to the evolution field of
Icelandic basalts and the plume source domain.

Tectonic setting

In the Nb/Yb -Th/Yb diagram, all TMC magmatic rocks
are located in the MORB-OIB field (Fig. 15A). They present
high Nb (91ppm average) and Zr (321ppm average) contents
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Figure15. (A) Nb/Yb vs Th/Yb diagram and (B) Nb/Yb vs TiO2/Yb diagram after Pearce (2008), (C) Th-Tb*3-Ta*2 (OD: Orogenic domain,
ID: Intermediate domain, AD: Anorgenic domain and (D) TiO2-Nb/3-Th diagrams after Cabanis & Thiéblemont (1998) and Holm (1985).
IRT : Initial Rift Tholeiite average after Pouclet et al. (1995), CT : Continental Tholeiite average after Holm (1985).

similar to those of OIB (Nb=48ppm) and Zr (280ppm)
indicating an origin from an enriched mantle source (Sun &
McDonough 1989). On the diagram Th-Tb.3-Ta.2, TMC
rocks are spread in the continental tholeiitic domain and a
part in the OIB field (Fig. 15C). In the Nb/3-TiO2-Th
diagram, these rocks correspond to plate margin lavas (Fig.
15D), this diagram also confirms the initial tholeiitic rift
character for the whole TMC in referring to the index
proposed by Pouclet et al. (1995). According to these
geochemical data, the TMC was set up in an extensive
context probably controlled by the presence of a plume with
slightly varying degrees of melting and probably different
source depths.

DISCUSSION & CONCLUSION

Our approach allows us to distinguish a main family of
rocks, the kaersutite lamprophyres recorded in dykes,
laccoliths and sills. The olivine dolerites form a second
family of rocks seen only in certain sills. There are only
slight differences between these rock families or facies
groups. They present the same mineralogical composition
with olivine, pyroxene, kaersutite and plagioclase. Their
geochemical signatures are similar with only minor
differences. The TMC rocks consist of rich-Ti alkali basalts
generated from asthenospheric to sub-lithospheric mantle

probably controlled by the presence of a plume with slightly
varying degrees of melting at slightly different depths. This
magmatism took place in an intraplate extensive context.

The Ti/Y ratio greater than 500 is a predominant
character in the basalts of the large LIP magmatic provinces
(Xu et al. 2001, 2004, Zhong et al. 2006, Wang et al. 2011,
Zhang et al. 2013, Lai et al. 2016). Generally, in the ratio
Ti/Y, Ti shows a strong incompatibility with garnet
( = 0.29, Johnson 1998). Whereas Y has a strong

compatibility with the garnet ( = 4.2 – 7.1,

Jenner et al. 1993). Therefore, high Ti/Y ratios indicate a
deep partial melting where the garnet is stable, whereas low
Ti/Y ratios correspond to partial melting in shallow-levels
where the spinel is stable. The TMC rocks have an average
Ti/Y ratio higher than 500. They are hence classified as Ti-
rich basalts and originated from a garnet source deep plume.
The combination of regional geology with tectonics leads us
to explain the generation of Ti/Y-rich rocks of TMC as
follows. The Tafilalt sedimentary sequence (Robert-Charrue
& Burkhard 2008, Baidder et al. 2016) and geophysical data
(Robert-Charrue 2006) show that the region is characterized
by a thick lithosphere and expressed insignificant uplift
during the Paleozoic and the Mesozoic. The rise of a warm
plume from the deep mantle triggered the partial melting of
metasomatic veins and reservoirs in the continental Tafilalt
lithosphere. The depth of the source and the variation of the
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melting rate gave rise to two liquids different by their TiO2

richness. A first minor poor TiO2 liquid gave olivine
dolerites. A second major rich TiO2 liquid gave kaersutite
lamprophyres rocks.

Pouclet et al. (2017) argued that the TMC rocks were
folded and metamorphosed during the Late Carboniferous
tectonic phases of the Variscan Orogeny. They suggest that
their emplacement occurred during two distinct magmatic
events, i) in the late Famennian- Tournaisian (for example
the Znaigui and Dboa sites) and ii) in the early to late Visean
(Eastern Mfis and Widane Chebbi), similar to what is
observed in the Meseta realm. (Aarab & Beauchamp 1987,
Kharbouch 1994, Roddaz et al. 2002, Bennouna et al. 2004,
Driouch et al. 2010). However, all field arguments agree for
intrusive emplacement in the Paleozoic folded units at least
after the Visean, such as, (i) the fact that the feeder dykes cut
across all Paleozoic terranes (inclusively the Visean); (ii) the
presence of sill’s frozen edges and laccoliths’s cooling
borders, and (iii) the absence of pillow-lavas and of
sediment-lava interaction figures. In this scheme, it is very
difficult, even inconceivable, to imagine the magmatic body
of Znaigui as an underwater volcanic plug as proposed by
Pouclet et al. (2017). It is simply an eroded, small growing
laccolith, in concordance with the absence of coarse grained
rocks (gabbros and syenites).

Chabou et al. (2017a-b) suggested a single event that
would be much more recent in the Paleozoic-Mesozoic
transition or even linking the complex to the presages of the
opening of the Central Atlantic. Regionally, several dykes
and doleritic sills are recognized in the West African domain
and dated around 200 Ma. They belong to the Central
Atlantic Magmatic Province (CAMP; Hailwood & Mitchell,
1971, Salmon et al. 1986, Knight et al. 2004, Chabou et al.
2007, 2008). Chabou et al. (2017a-b) used the immobile
element-based discrimination diagram (Zr/Ti vs Nb/Y) to
deduce the divergence of the TMC composition with respect
to the CAMP field. In addition, the Ti (> 2 wt%) content of
the TMC rocks does not match the tholeiitic Ti (<2 wt%) of
the CAMP. The REE high-Ti tholeiitic CAMP basalts
present flat REE patterns (Chabou et al. 2007), that don’t fit
with the TMC patterns.

In the Hoggar, doleritic dykes and sills intrude the lower
Ordovician-Devonian formations in the Tim Mersoi Basin
(Lessard 1961). They were attributed to Tournaisian by
K/Ar (Djellit et al. 2006). In the Murzuq Basin, Derder et al.
(2016) dated the same bodies by K/Ar to Praguian (410 Ma)
with a rejuvenation at Serpukhovian (326 Ma). Recently,
Mekkaoui et al. (2017) reported two geochemical signatures
in dolerites from the Daoura-Ougarta Range, one being
similar to those of the TMC and the other one to those of the
CAMP. They would be therefore derived from two different
mantle sources, through different melting conditions and
subjected to distinct differentiation and contamination
processes.

The northern margin of the Saharan platform housed
several magmatic events between the latest stages of the
Variscan evolution and the earliest stages of the Alpine
Wilsonian cycle. The TMC magmatism is post-Visean, and
then cannot be assigning to any of the Devonian or
Carboniferous events known in the Meseta or Saharan
domains. On the other hand, the TMC cannot be
geochemically correlated with CAMP. This rationale leads

to the assignation of the TMC to some specific event
between the latest Paleozoic and the Late Triassic.
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Tableau. Chemical analyses of Tafilalt magmatic complex .

Sample TA6 TA2 TA3 TA4 TA22 TA20 TA21

Location Al Atrous Oum Lhdej

Hostrock Silurian Lochkovian Givetian Famennian Famennian

Setting Sill Sill Sill Sill Sill Sill Sill

Group G2 G1 G1 G1 G2 G2 G2

(Wt%)

SiO2 44.55 43.29 41.35 44.77 40.7 39.58 41.78

Al2O3 15.93 14.99 14.47 15 13.07 12.56 13.32

Fe2O3 8.49 11.12 11.05 11.96 12.43 12.24 12.43

MgO 5.23 7.2 6.09 7.82 6.66 6.34 7.01

CaO 7.8 8.53 10.47 7.1 9.37 9.96 9.74

Na2O 4.74 3.05 2.64 4.05 3.94 3.56 3.17

K2O 0.62 0.56 0.38 0.52 1.1 0.54 1.22

TiO2 2.07 2.24 2.26 2.3 3.05 3.02 3.13

P2O5 1.6 0.7 0.73 0.69 2.08 2.14 2.07

MnO 0.09 0.15 0.14 0.16 0.17 0.16 0.19

Cr2O3 0.013 0.021 0.017 0.021 0.01 0.01 0.01

LOI 8.4 7.8 10.1 5.3 6.5 9.3 5.2

Sum 99.57 99.69 99.72 99.68 99.06 99.45 99.27

(ppm)

Ba 1040 368 266 381 1570 826 2317

Cs 2.2 1.1 2.6 0.6 20.9 3.4 0.4

Ga 20.4 18.4 17.9 18.1 19.5 19.6 19.4

Hf 7.6 3.5 3.4 3.6 8.6 8 8.4

Nb 82.8 34 36.2 37.2 98.8 94.3 97.2

Rb 11.9 4.4 2.4 6.3 18.1 7 12.2

Sn 2 1 2 2 2 2 3

Sr 935.5 1177.9 1093.2 1234.8 4413.8 2065.6 2089.6

Ta 4.1 1.8 2 1.9 5.2 4.3 4.9

Th 10.6 1.9 2.1 2.1 9.6 8.5 8.9

U 3.1 0.7 0.7 0.8 2.4 2.2 2.5

Zr 397.9 144.8 146.1 152.4 382.8 362.9 377.5

Y 19.2 17.5 17.2 17.1 29.6 27.3 27.7

La 99.6 29.7 31.7 31.8 118.6 112.1 114.6

Ce 190.8 61.9 67.2 65 243.7 238.3 244.4

Pr 19.23 7.32 7.59 7.56 27.4 26.61 26.63

Nd 69.5 30 30.8 30.6 104.4 99.4 102.6

Sm 10.37 5.4 6.03 5.76 16.04 15.52 15.75

Eu 2.96 1.84 1.96 1.95 4.65 4.46 4.58

Gd 8.18 5.14 5.25 5.48 12.21 11.86 12.49

Tb 0.98 0.72 0.76 0.75 1.57 1.52 1.5

Dy 4.9 3.82 4.09 3.73 6.86 6.97 6.9

Ho 0.73 0.72 0.67 0.71 1.14 1.03 1.12

Er 1.79 1.6 1.61 1.87 2.71 2.62 2.62

Tm 0.25 0.23 0.23 0.25 0.33 0.32 0.34

Yb 1.49 1.42 1.49 1.44 1.96 1.88 2.05

Lu 0.22 0.19 0.21 0.21 0.27 0.25 0.28

Sample TA6 TA2 TA3 TA4 TA22 TA20 TA21

Location Al Atrous Oum Lhdej
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Hostrock Silurian Lochkovian Givetian Famennian Famennian

Setting Sill Sill Sill Sill Sill Sill Sill

Group G2 G1 G1 G1 G2 G2 G2

(Wt%)

SiO2 44.55 43.29 41.35 44.77 40.7 39.58 41.78

Al2O3 15.93 14.99 14.47 15 13.07 12.56 13.32

Fe2O3 8.49 11.12 11.05 11.96 12.43 12.24 12.43

MgO 5.23 7.2 6.09 7.82 6.66 6.34 7.01

CaO 7.8 8.53 10.47 7.1 9.37 9.96 9.74

Na2O 4.74 3.05 2.64 4.05 3.94 3.56 3.17

K2O 0.62 0.56 0.38 0.52 1.1 0.54 1.22

TiO2 2.07 2.24 2.26 2.3 3.05 3.02 3.13

P2O5 1.6 0.7 0.73 0.69 2.08 2.14 2.07

MnO 0.09 0.15 0.14 0.16 0.17 0.16 0.19

Cr2O3 0.013 0.021 0.017 0.021 0.01 0.01 0.01

LOI 8.4 7.8 10.1 5.3 6.5 9.3 5.2

Sum 99.57 99.69 99.72 99.68 99.06 99.45 99.27

(ppm)

Ba 1040 368 266 381 1570 826 2317

Cs 2.2 1.1 2.6 0.6 20.9 3.4 0.4

Ga 20.4 18.4 17.9 18.1 19.5 19.6 19.4

Hf 7.6 3.5 3.4 3.6 8.6 8 8.4

Nb 82.8 34 36.2 37.2 98.8 94.3 97.2

Rb 11.9 4.4 2.4 6.3 18.1 7 12.2

Sn 2 1 2 2 2 2 3

Sr 935.5 1177.9 1093.2 1234.8 4413.8 2065.6 2089.6

Ta 4.1 1.8 2 1.9 5.2 4.3 4.9

Th 10.6 1.9 2.1 2.1 9.6 8.5 8.9

U 3.1 0.7 0.7 0.8 2.4 2.2 2.5

Zr 397.9 144.8 146.1 152.4 382.8 362.9 377.5

Y 19.2 17.5 17.2 17.1 29.6 27.3 27.7

La 99.6 29.7 31.7 31.8 118.6 112.1 114.6

Ce 190.8 61.9 67.2 65 243.7 238.3 244.4

Pr 19.23 7.32 7.59 7.56 27.4 26.61 26.63

Nd 69.5 30 30.8 30.6 104.4 99.4 102.6

Sm 10.37 5.4 6.03 5.76 16.04 15.52 15.75

Eu 2.96 1.84 1.96 1.95 4.65 4.46 4.58

Gd 8.18 5.14 5.25 5.48 12.21 11.86 12.49

Tb 0.98 0.72 0.76 0.75 1.57 1.52 1.5

Dy 4.9 3.82 4.09 3.73 6.86 6.97 6.9

Ho 0.73 0.72 0.67 0.71 1.14 1.03 1.12

Er 1.79 1.6 1.61 1.87 2.71 2.62 2.62

Tm 0.25 0.23 0.23 0.25 0.33 0.32 0.34

Yb 1.49 1.42 1.49 1.44 1.96 1.88 2.05

Lu 0.22 0.19 0.21 0.21 0.27 0.25 0.28

TA21+ TA46 TA48 TA52 TA53 TA54 TA55 TA56

Mfis

Famennian Famennian

Sill Sill Laccolith Laccolith Laccolith Laccolith Laccolith Laccolith

G2 G2 G2 G2 G2 G2 G2 G2

(Wt%)

42.72 43.17 44 42.77 50.29 51.42 43.08 40.83



110 Najih et al.-. The Tafilalt magmatic complex, petrology and geochemistry, preliminary interpretation

12.74 14.87 15.09 15.15 18.79 18.62 15.16 15.22

12.56 10.24 10.53 10.97 6.34 5.59 10.43 9.68

7.19 5.99 7.35 5.13 4.03 2.23 6.8 6.64

8.89 8.8 7.85 8.05 4.89 5.95 9.14 8.94

3.54 4.22 3.5 4.75 3.65 5.49 4.04 4.65

0.56 1.07 2.8 0.16 4.57 2.78 1.61 0.16

3.03 2.63 2.63 2.66 1.89 1.53 2.62 2.53

1.92 2.04 2.1 2.18 0.59 0.45 2.12 2.02

0.18 0.12 0.15 0.09 0.13 0.13 0.14 0.09

0.016 0.011 0.013 0.01 0.01 0.012

6 5.9 3.3 7.7 4 5.1 4.1 8.8

99.31 99.09 99.27 99.67 99.21 99.33 99.26 99.52

(ppm)

2048 4142 1959 253 1933 1101 2837 159

0.4 0.7 8.7 0.3 0.3 1.2 0.4 0.3

19 19.5 19.6 18.5 20.3 21.2 19.3 19.5

7.9 6.7 6.6 6.7 8 8.1 6.3 6.3

90 98.5 89.7 95.2 113.3 114.7 97.2 96.4

5.1 10.4 29.8 3 43.8 26.4 18.4 2.5

3 2 2 4 2 2 2 3

2050.8 1968.4 2662.9 926.1 3188.1 2963.8 1932.9 839.5

4 4.4 4.1 4.6 5.9 5.5 4.7 4.8

8.5 8.6 8.4 8.8 9.8 11.5 8.4 7.8

2.3 2.6 2.5 2.7 3 3.1 2.4 2.6

350.3 323.1 303.1 309.5 392.5 400.7 315.7 304.5

28.4 23.6 23.4 23.1 20.7 19.4 23.6 27.1

107.6 122.8 122.2 126.9 116.6 116 127.2 118.5

224.9 233.2 239.9 241.1 214.4 200.2 239.3 224.5

24.84 24.14 24.38 24.86 21.02 19 24.68 22.93

95.7 90 90.9 90.5 70.3 60.6 90.5 85.3

14.9 13.33 13.63 13.29 10.55 8.64 13.21 13.49

4.29 3.95 3.93 5.28 2.98 2.67 3.84 4.42

12.02 10.24 10.2 10.23 7.85 6.75 10.46 10.62

1.51 1.21 1.22 1.2 0.95 0.83 1.22 1.3

6.7 5.66 5.6 5.67 4.62 4.31 5.79 5.98

1.06 0.95 0.91 0.9 0.76 0.71 0.91 0.91

2.54 2.13 2.12 2.11 1.85 1.93 2.15 2.17

0.36 0.26 0.28 0.29 0.28 0.27 0.29 0.28

1.93 1.74 1.6 1.66 1.76 1.56 1.82 1.69

0.23 0.24 0.25 0.24 0.25 0.25 0.21 0.24

TA57 TA58 TA61 TA62 TA64a TA66 TA68 TA69

Laccolith Laccolith Laccolith Laccolith Laccolith Laccolith Laccolith Laccolith

G2 G2 G2 G2 G2 G2 G2 G2

(Wt%)

43.99 44.14 47.45 45.11 43.51 40.87 42.79 42.82

15.05 16.37 17.71 15.97 15.11 14.95 14.82 14.23

10.54 10.33 6.96 10.04 10.5 10.82 10.06 10.94

6.85 4.81 2.69 4.95 6.67 6.19 6.37 6.84
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8.73 6.16 7.54 6.41 6.6 8.21 8.38 8.25

3.61 4.71 2.97 3.06 3.7 4.41 4.86 4.13

2.23 1.89 5.11 3.88 2.52 0.17 0.49 1.1

2.6 2.66 2.23 2.6 2.65 2.66 2.63 2.4

2.16 1.41 0.74 1.42 2.18 2.18 1.96 2.44

0.14 0.14 0.12 0.14 0.15 0.15 0.24 0.26

0.011 0.009 0.009 0.011 0.011 0.008 0.013

3.2 6.8 5.5 5.6 5.5 8.2 6.5 5.8

99.16 99.47 99 99.24 99.15 98.78 99.13 99.22

(ppm)

2885 2558 3823 3840 2703 144 3849 3389

0.4 1 0.7 0.4 0.8 0.2 0.4 0.8

19.5 20.6 22.3 19.9 21.6 20.2 18.6 18.5

6.6 5.4 9 5.6 6.7 7.2 7.3 6.5

89.5 75 127.1 73.3 93.4 99.1 106.5 83.7

23.7 21.3 58.3 33.1 18.4 1.7 7.1 14.7

2 2 2 3 2 4 1 1

2782.5 730.3 3131.3 1373.7 2918.4 866.3 1915.6 1626

5.1 3.7 6.5 3.8 4.4 4.7 5.4 4

8.1 4.7 10.6 5 9.8 9.2 8.6 8.4

2.3 1.6 2.9 1.8 2.8 2.5 2.4 2.4

304.4 258.8 412.1 251.8 315 322.4 327.7 313.9

23.3 23.1 24.2 22.4 24.1 24.2 25 26

120.1 79.2 129.3 77.9 126 134.9 111.2 125.8

227.6 158 245 154.7 239.4 257.1 221.1 247.4

23.98 16.31 24.15 16.14 24.96 26.47 23.53 25.92

88 62.4 85.8 61.2 93.1 99.5 86.1 94.5

13.13 10.18 11.9 10.04 13.22 14.64 13.19 14.45

4.01 2.98 3.56 3.01 3.91 5.78 3.76 3.91

10.65 8.38 9.46 8.79 11.16 11.2 9.75 10.12

1.24 1.08 1.15 1.07 1.28 1.31 1.2 1.27

5.87 5.27 5.91 5.09 5.86 5.73 5.77 6.3

0.85 0.89 0.9 0.91 0.88 0.93 0.91 0.92

2.16 2.08 2.52 2.12 2.17 2.2 2.38 2.38

0.27 0.27 0.32 0.28 0.28 0.28 0.29 0.3

1.52 1.64 1.99 1.71 1.62 1.78 1.92 1.77

0.24 0.26 0.23 0.21 0.24 0.24 0.24 0.29

TA60 TA65 TA67 TA70 TA74 TA18 TA23a TA23b

Ouzina Marzouga

Famennian Tournaisian

Dyke Dyke Sill Dyke Sill Dyke Sill Sill

G2 G2 G2 G2 G2 G2 G2 G2

(Wt%)

42.65 46.22 41.65 43.15 43.42 40.42 42.39 42.39

15.32 16.68 14.9 14.76 15.14 14.13 14.54 14.53

12.94 9.91 9.56 10.27 10 10.26 10.31 10.05

6.15 4.55 6.41 6.22 6.29 6.43 6.83 6.94

5.47 5.61 8.26 9.14 8.33 9.4 8.25 8.42

4.96 6.53 4.03 4.63 4.44 3.15 4.91 4.91
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0.15 0.03 0.74 0.61 0.8 0.52 0.87 0.85

2.55 2.63 2.64 2.6 2.68 2.32 2.75 2.91

2.28 1.45 2.1 2.11 1.13 1.85 1.74 1.61

0.11 0.14 0.4 0.23 0.14 0.13 0.14 0.13

0.01 0.006 0.011 0.01 0.017 0.012 0.015 0.019

7 5.9 8.8 5.5 7.1 11.1 6.6 6.4

99.63 99.62 99.54 99.25 99.51 99.67 99.31 99.12

(ppm)

198 1015 672 2890 1024 212 2478 4494

0.6 0.4 2.3 0.6 39.7 1.7 27.4 23.8

20.6 22 20.1 19.3 19.5 16.2 19.3 18.7

7.2 5.6 6.9 6.3 4.4 4.8 7 6.4

97.5 77.8 107.2 98.1 67.2 74.4 103.5 95.9

3.8 1.5 9.6 8.7 9.8 9.6 12.3 11

5 2 3 1 1 2 3 3

996.5 808.7 1531.7 1826.6 1778.2 1190.5 1851.6 1705.2

4.5 3.9 5.1 4.5 3.4 3.6 6.7 5.3

9.4 5 9 8.3 3.4 5.8 7.3 7

3.1 1.7 2.8 2.5 1.1 2 2.3 2.1

355.2 270.9 336.1 316.2 220.6 244.2 330.3 301.3

32.9 24 26.2 24.7 20.5 21.1 23.2 20.6

136.8 85 132.1 122.6 59 85.2 101.1 90.5

252.4 163.7 247.1 234.1 119.9 165.7 198.4 184.9

26.26 17.28 25.14 24.45 12.82 17.97 20.54 19.02

94.6 65.9 93.9 90.4 48.2 66.9 74.6 71.7

13.78 11.04 14.19 13.43 8.07 10.31 11.57 11.1

4.28 3.39 3.58 3.83 2.78 3.15 3.54 3.25

11.58 8.89 11.01 9.99 7.43 7.84 9.46 8.92

1.54 1.13 1.29 1.19 0.92 1.02 1.16 1.13

8.36 5.51 6.22 6 4.65 4.8 5.47 5.04

1.43 0.91 0.96 0.94 0.77 0.86 0.87 0.84

3.5 2.19 2.3 2.05 1.96 1.81 2.12 1.93

0.4 0.31 0.29 0.3 0.26 0.27 0.25 0.25

1.72 1.45 1.56 1.76 1.63 1.56 2.04
1.63

0.21 0.21 0.22 0.2 0.22 0.2 0.29
0.22

TA24 TA33

Visean

Sill Sill

G2 G2

(Wt%)

42.22 42.48

14.37 13.84

10.43 11.99

7.32 7.03

8.35 7.6

4.58 3.83

0.7 0.89

2.86 2.99

1.65 1.72

0.15 0.15
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0.019 0.014

6.7 6.7

99.35 99.19

(ppm)

1999 2844

18.5 13.9

20.6 20.3

6.7 7.6

101.4 90.8

10.7 14.9

3 6

1945.6 2303.2

5.2 4.5

7.2 8.1

2.2 2.5

316.6 346.5

22.7 27.7

92.3 109.7

183.6 216.5

19.85 24.14

76.6 92.7

11.55 14.28

3.56 3.96

9.52 11.29

1.15 1.46

5.36 6.69

0.88 1.12

1.95 2.82

0.26 0.34

1.56 2.04

0.2 0.29
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